scholarly journals Efficacy of Metamifop for the Control of Common Bermudagrass

2016 ◽  
Vol 26 (4) ◽  
pp. 394-398 ◽  
Author(s):  
Tyler Cooper ◽  
Leslie L. Beck ◽  
Chase M. Straw ◽  
Gerald M. Henry

Metamifop is a postemergence aryloxyphenoxypropionic acid herbicide used for the control of annual and perennial grass weeds in cereal crops and rice (Oryza sativa L.). Previous research observed creeping bentgrass (Agrostis stolonifera L.) tolerance to applications of metamifop, suggesting utilization for the removal of encroaching bermudagrass (Cynodon Rich.) from creeping bentgrass putting greens with little to no phytotoxicity. Therefore, the objective of our research was to evaluate the efficacy of metamifop for common bermudagrass [Cynodon dactylon (L.) Pers.] control in a greenhouse environment. Experiments were conducted at the Plant and Soil Science greenhouse facility at Texas Tech University in Lubbock in 2011 and 2012. ‘Riviera’ and ‘Savannah’ common bermudagrass were seeded at 218 lb/acre into 4-inch square pots containing a soilless potting media on 26 Aug. 2011 and 14 Nov. 2011. Pots were allowed to mature in the greenhouse over a 3-month period where they were maintained at a height of 0.25 inches. Herbicide treatments were applied on 1 Dec. 2011 and 8 Feb. 2012 and consisted of metamifop at 0.18, 0.27, 0.36, or 0.45 lb/acre. A sequential application of each treatment was made on 22 Dec. 2011 and 29 Feb. 2012. A nontreated control was included for comparison. Clipping ceased after initial herbicide treatment and pots produced biomass for 3 weeks. Biomass above 0.25 inch was removed from each pot, dried, and weighed. This procedure was conducted again 3 weeks after sequential treatments. The rate of metamifop required to reduce bermudagrass growth 50% (GR50) was calculated 3 and 6 weeks after initial treatment (WAIT). Visual ratings of percent bermudagrass control were recorded weekly on a scale of 0% (no control) to 100% (completely dead bermudagrass). As metamifop rate increased, bermudagrass biomass decreased. The calculated GR50 at 3 WAIT for ‘Savannah’ and ‘Riviera’ was 0.19 and 0.14 lb/acre, respectively. Nontreated control pots exhibited 0% control and produced 0.59 to 0.83 g of biomass at 3 WAIT, regardless of cultivar. Metamifop at 0.27 to 0.45 lb/acre exhibited 96% to 100% bermudagrass control at 3 WAIT, regardless of cultivar. Bermudagrass subjected to those same treatments only produced 0.01 to 0.03 g of biomass at 3 WAIT, regardless of cultivar. The 0.18-lb/acre rate of metamifop exhibited only 9% control of ‘Savannah’ bermudagrass with 0.72 g of biomass collected, while ‘Riviera’ was controlled 41% with 0.38 g of biomass collected. The calculated GR50 at 6 WAIT for ‘Savannah’ and ‘Riviera’ was 0.13 and 0.14 lb/acre, respectively. Sequential applications of metamifop at 0.27 to 0.45 lb/acre completely controlled bermudagrass (100%) at 6 WAIT, while a sequential application at 0.18 lb/acre only controlled bermudagrass 8% to 19% at 6 WAIT, regardless of cultivar. Bermudagrass subjected to 0.18 lb/acre exhibited 0.48 to 0.56 g of biomass at 6 WAIT, regardless of cultivar. Metamifop shows potential as an alternative control option for common bermudagrass present within cool-season turfgrass species.

Weed Science ◽  
2016 ◽  
Vol 64 (1) ◽  
pp. 12-24 ◽  
Author(s):  
Patrick E. McCullough ◽  
Jialin Yu ◽  
Mark A. Czarnota ◽  
Paul L. Raymer

Bermudagrass and goosegrass are problematic weeds with limited herbicides available for POST control in creeping bentgrass. Metamifop effectively controls these weeds with greater selectivity in cool-season grasses than other ACCase inhibitors. The objectives of this research were to determine the physiological basis for metamifop selectivity in turfgrasses. In greenhouse experiments, metamifop rate required to reduce shoot biomass 50% from the nontreated (GR50) at 4 wk after treatment was > 6,400, 2,166, and 53 g ai ha−1for creeping bentgrass, Kentucky bluegrass, and goosegrass, respectively. The GR50for bermudagrass treated with diclofop-methyl or metamifop was 2,850 and 60 g ha−1, respectively. In laboratory experiments, peak absorption of14C-metamifop was reached at 48, 72, and 96 h after treatment (HAT) for goosegrass, creeping bentgrass and Kentucky bluegrass, respectively. Grasses translocated < 10% of the absorbed radioactivity out of the treated leaf at 96 HAT, but creeping bentgrass translocated three times more radioactivity than goosegrass and Kentucky bluegrass. Creeping bentgrass, Kentucky bluegrass, and goosegrass metabolized 16, 14, and 25% of14C-metamifop after 96 h, respectively. Goosegrass had around two times greater levels of a metabolite at retention factor 0.45 than creeping bentgrass and Kentucky bluegrass. The concentration of metamifop required to inhibit isolated ACCase enzymes 50% from the nontreated (I50) measured > 100, > 100, and 38 μM for creeping bentgrass, Kentucky bluegrass, and goosegrass, respectively. In other experiments, foliar absorption of14C-metamifop in bermudagrass was similar to14C-diclofop-methyl. Bermudagrass metabolized 23 and 60% of the absorbed14C-diclofop-methyl to diclofop acid and a polar conjugate after 96 h, respectively, but only 14% of14C-metamifop was metabolized. Isolated ACCase was equally susceptible to inhibition by diclofop acid and metamifop (I50= 0.7 μM), suggesting degradation rate is associated with bermudagrass tolerance levels to these herbicides. Overall, the physiological basis for metamifop selectivity in turfgrass is differential levels of target site inhibition.


2017 ◽  
Vol 31 (5) ◽  
pp. 714-723
Author(s):  
Sandeep S. Rana ◽  
Shawn D. Askew

Methiozolin is an isoxazoline herbicide that selectively controls annual bluegrass in cool-season turf and may control roughstalk bluegrass, another weedyPoaspecies that is problematic in many turfgrass systems. However, the majority of research to date is limited to evaluating methiozolin efficacy for annual bluegrass control in creeping bentgrass putting greens. Research was conducted comparing various application regimes of methiozolin and other herbicides for long-term roughstalk bluegrass control in creeping bentgrass golf fairways. Methiozolin-only treatments did not injure creeping bentgrass or reduce normalized difference vegetative index (NDVI) at 2 golf course locations based on 20 evaluation dates over a 2.5-yr period. The 2.5-yr average turf quality generally declined as roughstalk bluegrass control increased due to transient turf cover loss. At 1 yr after last treatment, methiozolin at 1500 g ai ha-1applied four times in fall reduced roughstalk bluegrass cover 85%. This was equivalent to methiozolin at 1000 g ha-1applied four times in fall, but greater than low rates of methiozolin applied four times in spring or twice in fall and spring. Amicarbazone, primisulfuron, and bispyribac-sodium alone either did not effectively reduce roughstalk bluegrass cover, or did so at the expense of increased creeping bentgrass injury. Results of this study suggest that methiozolin alone or tank-mixed with amicarbazone or primisulfuron is an effective long-term approach for selectively controlling roughstalk bluegrass in creeping bentgrass.


Weed Science ◽  
1973 ◽  
Vol 21 (6) ◽  
pp. 528-531 ◽  
Author(s):  
G. E. Coats ◽  
C. Y. Ward ◽  
E. L. McWhirter

Overseeded rough bluegrass (Poa trivialisL. ‘Danish common’) and Italian ryegrass (Lolium multiflorumLam. ‘Gulf’) maintained under putting green conditions were more susceptible to benefin (N-butyl-N-ethyl-α,α,α-trifluoro-2,6-dinitro-p-toluidine) and DCPA (dimethyl tetrachloroterephthalate) than creeping bentgrass (Agrostis palustrisHud. ‘Penn-cross’), red fescue (Festuca rubraL. ‘Dawson’), or perennial ryegrass (Lolium perenneL. ‘Medalist II’). February applications of 1.68 or 3.36 kg/ha of benefin and 6.72 or 13.44 kg/ha of DCPA caused significantly more discoloration and reductions in density than equivalent rates applied in March or April. Benefin was more injurious than DCPA to all overseeded species as judged by quality or density. DCPA caused significant delays in the breaking of dormancy of bermudagrass [Cynodon dactylon(L.) Pers. ‘Tifdwarf’].


1997 ◽  
Vol 11 (3) ◽  
pp. 478-483 ◽  
Author(s):  
David W. Cudney ◽  
Clyde L. Elmore ◽  
Victor A. Gibeault ◽  
John S. Reints

Common bermudagrass is an invasive, perennial weed of cool-season turfgrass in California. Complete renovation of the infested area has been the only practical method of restoring desirable cool-season turfgrasses. In studies in southern and northern California, common bermudagrass was suppressed with sequential herbicide applications, allowing seedling establishment and regrowth of established cool-season turfgrass species. One application of fenoxaprop, triclopyr, or their combinations did not control common bermudagrass. Sequential applications of these herbicide treatments resulted in 99, 94, and 100% control of common bermudagrass, respectively, and resulted in establishment of seeded perennial ryegrass in Riverside, CA, over a 2-yr period. Similar results were obtained in the recovery of established tall fescue from a common bermudagrass/tall fescue turfgrass mixture in Willows, CA. Both fenoxaprop and triclopyr can reduce emergence and stunt seedling growth of perennial ryegrass and tall fescue. Greenhouse studies showed that stunting and stand loss of tall fescue and perennial ryegrass seedlings could be reduced by delaying applications from PRE to the two-leaf stage.


HortScience ◽  
2008 ◽  
Vol 43 (2) ◽  
pp. 514-518 ◽  
Author(s):  
Monica L. Elliott ◽  
J.A. McInroy ◽  
K. Xiong ◽  
J.H. Kim ◽  
H.D. Skipper ◽  
...  

Taxonomic diversity of bacteria associated with golf course putting greens is a topic that has not been widely explored. The purpose of this project was to isolate and identify culturable bacteria from the rhizosphere of creeping bentgrass (Agrostris palustris Huds.) at two sites (Alabama and North Carolina) and hybrid bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy] at two sites (Florida and South Carolina) for a minimum of 3 years with sampling initiated after the construction process. Randomly selected colonies were identified using gas chromatography for analysis of fatty acid methyl ester profiles. Over 9000 isolates were successfully analyzed. When a similarity index of 0.300 or higher was used, the average number of unidentifiable isolates was 38.6%. The two dominant genera in both bentgrass and bermudagrass rhizospheres were Bacillus and Pseudomonas with Bacillus dominant in bermudagrass and Pseudomonas dominant or equal to Bacillus in bentgrass. Other genera that comprised at least 1% of the isolates at all four sites were Clavibacter, Flavobacterium, and Microbacterium. Arthrobacter also comprised a significant portion of the bacterial isolates in the bentgrass rhizosphere, but not the bermudagrass rhizosphere. Overall, there were 40 genera common to all four sites. At the species level, there were five that comprised at least 1% of the isolates at each location: B. cereus, B. megaterium, C. michiganensis, F. johnsoniae, and P. putida. As has been reported for many grasses, we found considerable taxonomic diversity among the culturable bacterial populations from the rhizospheres of bentgrass and bermudagrass grown in sand-based putting greens.


2019 ◽  
Vol 29 (6) ◽  
pp. 941-945
Author(s):  
John E. Kaminski ◽  
Tim T. Lulis ◽  
Travis R. Russell

Equipment with hydraulic implements are often used to maintain turfgrass surfaces. Hydraulic implements can malfunction and lead to leaks or spills of hydraulic fluid, which is phytotoxic to turfgrass. Previous research has documented extensively hydraulic fluid injury on warm-season turfgrasses, but these effects have not been evaluated on cool-season grasses and warrant further investigation. Therefore, the objectives of this study were to compare phytotoxicity of petroleum, vegetable, and synthetic hydraulic fluids on a creeping bentgrass (Agrostis stolonifera) putting green and to evaluate the influence of postapplication remediation practices on reducing turfgrass injury. Turfgrass injury was evaluated over a 4-week period in 2011 and 2012 after simulated hydraulic fluid leak and remediation practices were applied. Complete necrosis was observed after 28 days for all hydraulic fluid types. However, water rinse (RO) or detergent soap solution drench followed by brushing in/water rinse (SBR) remediation practices effectively eliminated turfgrass injury by the end of the 4-week period for synthetic polyalkylene glycol fluid treatments, but no other hydraulic fluid types. Turfgrass managers might consider the synthetic polyalkylene glycol hydraulic fluid tested in this study as a less phytotoxic alternative to petroleum hydraulic fluids if a remediation practice is implemented after a leak or spill.


HortScience ◽  
2004 ◽  
Vol 39 (7) ◽  
pp. 1754-1758 ◽  
Author(s):  
M.L. Elliott ◽  
E.A. Guertal ◽  
H.D. Skipper

The rhizospheres of creeping bentgrass (Agrostis palustris Huds.) and hybrid bermudagrass (Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy) putting greens were sampled quarterly for 4 years. Six bacterial groups, including total aerobic bacteria, fluorescent pseudomonads, actinomycetes, Gram-negative bacteria, Gram-positive bacteria, and heat-tolerant bacteria, were enumerated. The putting greens were located in four geographic locations (bentgrass in Alabama and North Carolina; bermudagrass in Florida and South Carolina) and were maintained according to local maintenance practices. Significant effects were observed for sampling date, turfgrass species and location, with most variation due to either turfgrass species or location. Bentgrass roots had significantly greater numbers of fluorescent pseudomonads than bermudagrass roots, while bermudagrass roots had significantly greater numbers of Gram-positive bacteria, actinomycetes and heat-tolerant bacteria. The North Carolina or South Carolina locations always had the greatest number of bacteria in each bacterial group. For most sampling dates in all four locations and both turfgrass species, there was a minimum, per gram dry root, of 107 CFUs enumerated on the total aerobic bacterial medium and a minimum of 105 CFUs enumerated on the actinomycete bacterial medium. Thus, it appears that in the southeastern U.S. there are large numbers of culturable bacteria in putting green rhizospheres that are relatively stable over time and geographic location.


2009 ◽  
Vol 2 (4) ◽  
pp. 396-403 ◽  
Author(s):  
Mark A. Garrison ◽  
John C. Stier ◽  
John N. Rogers ◽  
Alec R. Kowalewski

AbstractMost turfgrass species have been listed as either invasive or potentially invasive species in the U.S., but few data exist to verify their invasiveness. Our objective was to determine cool-season turfgrass survival on two abandoned golf courses to assess their invasive potential in unmanaged sites. Maintenance operations ceased at Matheson Greens Golf Course in 2000 and at Four Winds Golf Course in 2003. The frequency and abundance of creeping bentgrass, Kentucky bluegrass, and fine fescues in quadrats placed along transects were recorded and compared to other cover such as herbaceous dicots and bare soil in 2005 and 2007. Turfgrasses at both courses were unable to maintain monocultures. All turfgrasses were nearly absent from Matheson Greens Golf Course 5 yr after maintenance operations ceased. At the Four Winds Golf Course site, creeping bentgrass comprised less than 25% cover on former putting greens by 2007, and was rarely found outside of the former putting green areas. Kentucky bluegrass cover ranged from 5 to 75% on the former fairways. Herbaceous dicots usually dominated the former turf areas at both sites, and included noxious weeds such as Canada thistle and invasive weeds such as spotted knapweed.


Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1114-1114 ◽  
Author(s):  
J. E. Kaminski ◽  
T. Hsiang

Dead spot, also known as bentgrass dead spot or bermudagrass dead spot, is a relatively new disease of golf course putting greens and is caused by the pathogen Ophiosphaerella agrostis (1). The disease first was reported on a creeping bentgrass (Agrostis stolonifera) putting green in Maryland (2) and since has been identified on putting greens of creeping bentgrass and hybrid bermudagrass (Cynodon dactylon × C. transvaalensis) in the eastern and southern United States (3,4). In June 2004, disease symptoms resembling dead spot were observed on a golf course in southern Ontario. Small (≤3 cm) spots first appeared approximately 14 months after establishment of the sand-based, ‘L-93’ creeping bentgrass putting greens. The disease became more severe during the summer months and patches increased in size to as much as 5 to 8 cm in diameter. Dead spot infection centers remained visible throughout the winter months and the disease again became active during the spring of 2005. Bentgrass tissues growing adjacent to the periphery of active infection centers were orange-red to reddish-brown. Although dark brown ectotrophic hyphae were observed on bentgrass stolons, none were found on the roots. Few new infection centers occurred in 2005 and pseudothecia embedded within necrotic tissue only were observed in small numbers. No mature ascospores were observed when samples were collected during September 2005. A single fungal morphotype consistently was isolated from leaves and stolons with a rose-quartz color when grown for several days on potato dextrose agar. To demonstrate pathogenicity, ‘L-93’ creeping bentgrass seedlings were grown for 28 days in 10-cm-diameter pots containing an autoclaved greens-mix with a mechanical analysis of 94% sand, 5% silt, and 1% clay. Inoculum was prepared by placing mycelia from a hyphal-tipped isolate on an autoclaved mix of seed of tall fescue (Festuca arundinacea) and wheat (Triticum aestivum) bran (50% [vol/vol]), and grown at 24°C for 14 days. The inoculum (5 g) was embedded a few milliliters into the sand in the center of each pot (n = 5), and uninfested inoculum served as the untreated control. Pots were placed in enclosed plastic containers and incubated at room temperature (13 to 26°C) under natural light (replication 1) or under 14 h of light per day from fluorescent lights (replication 2). After 7 days, tissue along the periphery of each inoculation point became covered in a pink mycelium, and newly infected leaves appeared tan or brownish-red. Most plants were dead after 22 to 28 days of incubation. Reisolation of the pathogen from necrotic leaves produced fungal colonies similar in color, morphology, and growth rate to the original isolates. Few pseudothecia developed on infected tissue but were present in large numbers on infested tall fescue seed. Bitunicate asci containing spirally twisted filiform ascospores were observed. Light brown ascospores (n = 50) were 7 to 15 septate and measured 1.9 to 3.6 μm × 60.7 to 147.9 μm. On the basis of field symptoms, morphological characteristics, and pathogenicity tests, the pathogen was identified as O. agrostis. To our knowledge, this is the first report of dead spot on creeping bentgrass in Canada and of O. agrostis outside the United States. References: (1) M. P. S. Câmara et al. Mycologia 92:317, 2000. (2) P. H. Dernoeden et al. Plant Dis. 83:397, 1999. (3) J. E. Kaminski and P. H. Dernoeden. Plant Dis. 86:1253, 2002. (4) J. P. Krausz et al. Plant Dis. 85:1286, 2001.


2010 ◽  
Vol 20 (1) ◽  
pp. 179-185 ◽  
Author(s):  
Bernd Leinauer ◽  
Matteo Serena ◽  
Devesh Singh

A field experiment was conducted at New Mexico State University to investigate the effect of seeding rates and ZEBA polymer [starch-g-poly (2-propenamide-co-propenoic acid) potassium salt] seed coating on the germination and establishment of warm- and cool-season grasses, and cool-season blends and mixtures. Grasses were established at recommended and reduced (50% of recommended) seeding rates with coated and uncoated seeds under two irrigation regimes (98% and 56% reference evapotranspiration). With the exception of ‘Bengal’ creeping bentgrass (Agrostis stolonifera), the polymer coating did not improve germination of the turfgrasses tested 22 days after seeding (DAS). However, at the end of the establishment period (92 DAS), plots established with ‘Bengal’, Dunes Mix [mixture of ‘Hardtop’ hard fescue (Festuca longifolia), ‘Baron’ kentucky bluegrass (Poa pratensis), ‘Barok’ sheep fescue (Festuca ovina)], ‘Panama’ bermudagrass (Cynodon dactylon), and Turf Sense™ [mixture of ‘Baronie’ kentucky bluegrass, ‘Barlennium’ perennial ryegrass (Lolium perenne), and ‘Barcampsia’ tufted hairgrass (Deschampsia cespitosa)] achieved greater coverage (based on visual estimations) when coated seed was used compared with uncoated seed. Establishment was greater for ‘Bengal’, Dunes Mix, ‘Panama’, Turf Sense™, and Turf Saver™ [blend of ‘Barlexas II’, ‘Barrington’, and ‘Labarinth’ tall fescue (Festuca arundinacea)] when normal seeding rates were applied compared with reduced seeding rates. ‘Barleria’ crested hairgrass (Koeleria macrantha) plots did not establish, regardless of the treatments applied. Results showed that seed coating has the potential to improve establishment at recommended and reduced seeding rates and can compensate for less favorable conditions such as reduced irrigation, reduced seeding rate, or for a combination of both. At the end of the establishment period, not all grasses achieved coverage greater than 50%. Further research over a longer establishment period is needed to determine if coated seed can be beneficial in achieving full coverage.


Sign in / Sign up

Export Citation Format

Share Document