scholarly journals An In Vitro–Ex Vitro Micropropagation System for Hemp

2021 ◽  
pp. 1-9
Author(s):  
Jessica D. Lubell-Brand ◽  
Lauren E. Kurtz ◽  
Mark H. Brand

Hyperhydricity of shoots initiated in vitro, poor shoot extension, inability of shoot cultures to maintain good growth over an extended time, and unsuccessful ex vitro rooting have limited the development of a commercial scale micropropagation system for hemp (Cannabis sativa). We present a culture initiation method that prevents shoot hyperhydricity using vented-lid vessels with 0.2-µm pores and medium containing agar at 1% (w/v). To optimize shoot multiplication in vitro, a control medium (medium A) and four treatment media (medium B, C, D, and E), with varying inorganic nutrients and vitamins were tested. Control medium A consisted of 1× Murashige and Skoog (MS) with vitamins plus 3% (w/v) sucrose, 0.5 mg·L−1 metatopolin, 0.1 mg·L−1 gibberellic acid, and 0.8% agar (w/v) at pH 5.7. The four treatment media differed from the control medium as follows: medium B, 2.5× MS with vitamins; medium C, 1× MS with vitamins plus added mesos [calcium chloride (anhydrous), magnesium sulfate (anhydrous), and potassium phosphate (monobasic) nutrients]; medium D, 1× MS with vitamins plus added vitamins; and medium E, 1× MS with vitamins plus added mesos and vitamins. Medium C and medium E produced more microcuttings than the control at 6 weeks after the initial subculture with shoot multiplication media and all other treatments at 9 and 12 weeks. Shoots grown on these two media displayed optimal extension and leaf lamina development; however, they exhibited slight chlorosis by 12 weeks after subculture with shoot multiplication media. In a separate experiment, medium E was supplemented with ammonium nitrate at 0, 500, 1000, or 1500 mg·L−1, and cultures grown with 500 mg·L−1 produced the most microcuttings and exhibited the best combination of shoot extension and leaf lamina development. We provide a method of prerooting microshoots in vitro that has resulted in 75% to 100% rooting ex vitro in rockwool. Using 10 recently micropropagated plants, ≈300 retip cuttings (cuttings taken from new shoots from recently micropropagated plants) were harvested over 10 weeks. The average weekly rooting was more than 90%. Retipping can produce nine-times as many plants in a similar amount of floor space as stem cuttings derived from traditional stock mother plants. The micropropagation/retipping method proposed can be a more efficient way to generate clonal liner plants for commercial-scale production.

HortScience ◽  
1990 ◽  
Vol 25 (6) ◽  
pp. 687-689 ◽  
Author(s):  
Michael E. Kane ◽  
Edward F. Gilman ◽  
Matthew A. Jenks ◽  
Thomas J. Sheehan

Procedures for in vitro establishment, rapid shoot proliferation, and ex vitro plantlet acclimatization of Cryptocoryne lucens de Witt were determined. Shoot cultures were established from surface-sterilized shoot tips cultured on Linsmaier and Skoog salts and vitamins medium (LS) solidified with 0.8% (w/v) agar and supplemented with 2.0 μm BA and 0.5 μm NAA. The effect of BA (0 to 20 μm) and 0.5 μm NAA on shoot multiplication from single-node and clustered triple-node shoot explants was determined after 35 days. The most efficient shoot proliferation (7.7 shoots/explant) occurred from single-node shoot explants cultured on LS + 20 μm BA and 0.5 μm NAA. Maximum plantlet establishment was achieved by direct sticking of triple-node (cluster) microcuttings in either soilless planting medium or polyurethane foam cubes. Production of highly branched salable plants from microcuttings was possible within 18 weeks. Chemical names used: N-(phenylmethyl) -1H-purin-6-amine (BA); 1-naphthaleneacetic acid (NAA).


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1768
Author(s):  
Agnieszka Wojtania ◽  
Monika Mieszczakowska-Frąc

Culinary rhubarb is a popular vegetable crop, valued for its long, thickened stalks, very rich in different natural bioactive ingredients. Tissue cultures are a useful tool for vegetative propagation of virus-free rhubarb plants and rapid multiplication of valuable selected genotypes. The aim of this study was to develop an effective method for in vitro propagation of selected genotypes of Polish rhubarb ‘Malinowy’ characterized by high yield and straight, thick and intensive red stalks. Identification and quantification of anthocyanins and soluble sugars by the HPLC method in shoot cultures and ex vitro established plantlets were also performed. Shoot cultures were established from axillary buds isolated from dormant, eight-year-old rhizomes. Effective shoot multiplication of rhubarb ‘Malinowy’ was obtained in the presence of 6.6 µM benzylaminopurine or 12.4 µM meta-topolin. Both cytokinins stimulated shoot formation in a manner that depended on sucrose concentration. Increasing the sucrose concentration from 59 to 175 mM decreased the production of shoots and outgrowth of leaves by 3-fold but enhanced shoot length, single shoot mass and callus formation at the base of shoots. This coincided with increased accumulation of soluble sugars (fructose, glucose) and anthocyanins-cyanidin-3-O-rutinoside (max. 208.2 mg·100 g−1 DM) and cyanidin-3-O-glucoside (max. 47.7 mg·100 g−1 DM). The highest rooting frequency (94.9%) and further successful ex vitro establishment (100%) were observed for shoots that were earlier rooted in vitro in the presence of 4.9 µM indole-3-butyric acid. Our results indicated that anthocyanin contents in leaf petioles were influenced by developmental stage. Under in vitro conditions, it is possible to elicit those pigments by sucrose at high concentration and meta-topolin.


2017 ◽  
Vol 41 (1) ◽  
Author(s):  
Leandro Silva Oliveira ◽  
Aloisio Xavier ◽  
Wagner Campos Otoni ◽  
José Marcello Salabert Campos ◽  
Lyderson Facio Viccini ◽  
...  

ABSTRACT Flow cytometry and microsatellite markers were used to determine a genetic fidelity of micropropagated plants from the two Eucalyptus urophylla x E. globulus clones and a Eucalyptus grandis x E. globulus clone derived from adult material. Clones were repeatedly subcultured for 25 subcultures on MS medium supplemented with BA (2.22 µM) and ANA (0.05 µM) for in vitro shoot multiplication. The elongation was performed in MS culture medium supplemented with AIB (2.46 µM) and BA(0.22 µM). The ex vitro rooting and acclimatization phases were lead at the same time. The micropropagated clones showed genetic stability by flow cytometry and microsatellite markers. The results proved that micropropagation, for purposes of rejuvenation, can be a viable technique to generate genetically stable or identical E. globulus hybrid clones.


2019 ◽  
Vol 11 (2) ◽  
Author(s):  
POPY HARTATIE HARDJO ◽  
DANNY PUTRA SENTOSA SUSANTO ◽  
WINA DIAN SAVITRI ◽  
MARIA GORETTI MARIANTI PURWANTO

Abstract. Hardjo PH, Susanto DPS, Savitri WD, Purwanto MGM. 2019. Shoot multiplication of Pogostemon cablin var. Sidikalang and patchouli oil profile. Nusantara Bioscience 11: 123-127. Pogostemon cablin Benth. is a plant producing patchouli oil, which mostly consists of patchouli alcohol compound. Patchouli oil has great potentials in the world market because of its stability and high price. In this study, in vitro multiplication of Sidikalang variety of Acehnese patchouli shoots was done on solid and liquid Murashige & Skoog (MS) medium. This study aimed to determine the effect of cytokinins in various combinations of shoot multiplication and to compare the patchouli oil yield of in vitro and ex vitro culture. In vitro multiplication of Acehnese patchouli shoots by using solid MS medium with addition of 0.2 ppm benzyl aminopurine (BAP) and 0.2 ppm Kinetin resulted in shoot explants with an average growth index of 82.198 ± 0.690. Patchouli oil extraction was done on 7 weeks old in vitro shoot explants cultured on solid MS medium + 0.2 ppm BAP + 0.2 ppm Kinetin using water distillation method. In vitro shoots yielded 2.5% patchouli oil and contained ± 35% patchouli alcohol compound, whereas ex vitro shoots produced 4% patchouli oil and contained ± 25% patchouli alcohol compound. The qualitative analysis by using thin layer chromatography (TLC) showed that there were similarities in the number of spot and Rf value for each spot of ex vitro and in vitro patchouli oil.


2016 ◽  
Vol 34 (3) ◽  
pp. 75-79 ◽  
Author(s):  
Allison D Oakes ◽  
Tyler R. Desmarais ◽  
William A. Powell ◽  
Charles A. Maynard

Tissue culture of plants has many applications, from producing genetically identical horticultural varieties, to production of secondary metabolites, to virus indexing, and most relevantly, developing novel traits by genetic transformation. Using Agrobacterium-mediated transformation on somatic embryos, blight-resistant American chestnuts [Castanea dentata (Marsh.) Borkh.] have been developed as shoot cultures in plant tissue culture. Rooting tissue-cultured shoots and acclimatizing the rooted plantlets are key steps in tree production. In this study, in vitro and ex vitro rooting methods were compared. The ex vitro method resulted in a lower initial rooting percentage but an overall higher survival percentage, resulting in higher potted plant production. The higher survival was likely due to partial acclimatization taking place before the plantlets were transplanted into potting mix. After 8 weeks, plantlets rooted via the ex vitro method were taller, and had more, and larger, leaves than the in vitro-rooted plantlets. These trees are currently in high demand for inoculation studies for federal regulatory review and eventually for restoration of this keystone species to its native habitat.


2020 ◽  
Vol 8 (1) ◽  
pp. 54-68
Author(s):  
Meena Maiya Suwal ◽  
Janardan Lamichhane ◽  
Dhurva Prasad Gauchan

Micropropagation is an alternative technique to propagate at large scale plants to meet global plant demand. Various researchers have worked on the micropropagation technique to regenerate bamboo species by using nodal segments from years. Contamination, browning, necrosis, and acclimatization with physiological stress are the extreme problems of the micropropagation technique. But, many numbers of papers have been published on micropropagation of the bamboo species through nodal segments as explants. The proliferation of the bamboo shoots is dependent on the season of collection, size of explants, the position of explants, diversity of plants, concentration and combination of plant growth regulators, most adequate culture medium, environmental condition of the equipment, handling, and individual species. Bamboo is a monocarpic fast-growing, tall perennial grass and having the high potential to generate economic and social benefits. It helps to maintain land patterns and control soil erosion.  The long life cycle of the bamboo produces a huge amount of seeds but unfortunately, mostly, they are non-viable. So, bamboos are propagated from vegetative by cutting and air layering. However, these methods are only for a small scale and they also tend to destroy large mother plant stocks and difficult to be transported. So, the in vitro propagation technique is useful to obtain large progenies from desired genotypes. Mostly, BAP and TDZ growth hormones are widely used for shoot multiplication and IBA, NAA and IAA are used for root initiation as per developed protocols in tissue culture for large scale production. This review intends to explore an overview of the recent literature reports to summarize the importance of micropropagation by using nodal segments of bamboo species and factors influencing it.


2012 ◽  
Vol 67 (1-2) ◽  
pp. 65-76 ◽  
Author(s):  
Adam Kokotkiewicz ◽  
Maria Luczkiewicz ◽  
Anna Hering ◽  
Renata Ochocka ◽  
Krzysztof Gorynski ◽  
...  

An efficient micropropagation protocol of Cyclopia genistoides (L.) Vent., an indigenous South African shrub of economic importance, was established. In vitro shoot cultures were obtained from shoot tip fragments of sterile seedlings cultured on solid Schenk and Hildebrandt (SH) medium supplemented with 9.84 μM 6-(γ,γ-dimethylallylamino)purine (2iP) and 1.0 μM thidiazuron (TDZ). Maximum shoot multiplication rate [(8.2 ± 1.3) microshoots/explant)] was observed on this medium composition. Prior to rooting, the multiplied shoots were elongated for 60 days (two 30-days passages) on SH medium with one-half sucrose concentration, supplemented with 4.92 μM indole-3-butyric acid (IBA). The rooting of explants was only possible in the case of the elongated shoots. The highest root induction rate (54.8%) was achieved on solid SH medium with one-half sucrose and one-half potassium nitrate and ammonium nitrate concentration, respectively, supplemented with 28.54 μM indole-3-acetic acid (IAA) and 260.25 μM citric acid. The plantlets were acclimatized for 30 days in the glasshouse, with the use of peat/gravel/perlite substrate (1:1:1). The highest acclimatization rate (80%) was obtained for explants rooted with the use of IAA-supplemented medium. The phytochemical profile of the regenerated plants was similar to that of the reference intact plant material. HPLC analyses showed that C. genistoides plantlets obtained by the micropropagation procedure kept the ability to produce xanthones (mangiferin and isomangiferin) and the fl avanone hesperidin, characteristic of wild-growing shrubs.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 693b-693
Author(s):  
Xiaoling Yu ◽  
Barbara M. Reed

Multiplication and elongation of shoot cultures established from mature trees of hazelnut cvs. Nonpareil and Tonda Gentile Romana were affected by changes in basal medium, carbon source and concentration, cytokinin and agar concentration. Explants on DKW medium produced significantly more shoots than those on Anderson medium or modified woody plant medium for chestnut. Explants on DKW medium with 3% glucose or fructose gave more and longer shoots than those with the other carbon sources. Cytokinins 6 benzylaminopurine (BA) and zeatin were more effective in producing shoots than kinetin and 2iP. On BA supplemented medium, the best multiplication rate was obtained with 1.5 - 2.0 mg/l. Explants grown on 0.4% agar produced more shoots than those on 0.6%, however, prolonged culture on 0.4% agar caused vitrification of lower parts of the plants. Shoot multiplication rates of these two cultivars were similar, but `Nonpareil' produced longer shoots than `Tonda Gentile Romana'.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 560d-560
Author(s):  
Dennis P. Stimart ◽  
John C. Mather

Cotyledons from developing embryos 6 to 8 weeks old of Liatris spicata (blazing star) were cultured on Murashige-Skoog (MS) medium containing 0, 0.4, 4.4, and 44.4 μ M benzyladenine (BA) or 0, 0.2, 2.2, and 22.2 μ M thidiazuron (TDZ) to induce adventitious shoot formation. The highest percent of cotyledons forming shoots with highest shoot counts was on medium containing 2.2 μ M TDZ. Vitreous shoots formed on medium with 22.2 μ M TDZ. Callus derived from cotyledons and cultured on medium containing 4.44 μ M BA or 2.2 μ M TDZ formed adventitious shoots with highest shoot counts on 4.44 μ M BA. Adventitious shoots derived from cotyledons and callus were rooted on MS medium with 5.0 μ Mindole-3-butyric acid, acclimatized and grown ex vitro. All micropropagated plants appeared similar to each other.


HortScience ◽  
2007 ◽  
Vol 42 (3) ◽  
pp. 629-632 ◽  
Author(s):  
W.L. Chen ◽  
D.M. Yeh

Elimination of in vitro contamination and shoot multiplication were studied with Aglaonema Schott ‘White Tip’. Apparently, contamination was reduced, but explants browned when 200 mg·L−1 streptomycin was used as either a pretreatment or incorporated into the medium. Reduced occurrence of contamination and browning was achieved in axillary bud explants excised from the stock plants that had not been watered for 2 months. Six shoots per explant elongated normally in Murashige and Skoog (MS) medium containing 30 μm benzylaminopurine (BA). MS medium containing 20 μm thidiazuron (TDZ) also resulted in six shoots per explant, but these shoots failed to extend beyond a rosette. Only microcuttings from 30 μm BA treatment were used for the ex vitro rooting trial, and indole-3-butytric acid (IBA) at 9.8 or 19.7 mm applied to the base of the microcuttings resulted in 100% ex vitro rooting and the longest roots.


Sign in / Sign up

Export Citation Format

Share Document