scholarly journals Additional Host Plants of Four Species of Billbug Found on New Jersey Turfgrasses

1990 ◽  
Vol 115 (4) ◽  
pp. 608-611 ◽  
Author(s):  
Jennifer M. Johnson-Cicalese ◽  
C.R. Funk

Studies were conducted on the host plants of four billbug species (Coleoptera:Curculionidae: Sphenophorus parvulus Gyllenhal, S. venatus Chitt., S. inaequalis Say, and S. minimus Hart) found on New Jersey turfgrasses. A collection of 4803 adults from pure stands of various turfgrasses revealed all four billbugs on Kentucky bluegrass (Poa pratensis L.), tall fescue (Festuca arundinacea Schreb.), and perennial ryegrass (Lolium perenne L.), and S. parvulus, S. venatus, and S. minimus on Chewings fescue (F. rubra L. ssp. commutata Gaud.). Since the presence of larvae, pupae, or teneral adults more accurately indicates the host status of a grass species, immature billbugs were collected from plugs of the various grass species and reared to adults for identification. All four species were reared from immature billbugs found in Kentucky bluegrass turf; immatures of S. venatus, S. inaequalis, and S. minimus were found in tall fescue; S. venatus and S. minimus in perennial ryegrass; and S. inaequalis in strong creeping red fescue (F. rubra L. ssp. rubra). A laboratory experiment was also conducted in which billbug adults were confined in petri dishes with either Kentucky bluegrass, perennial ryegrass, tall fescue, or bermudagrass (Cynodon dactylon Pers.). Only minor differences were found between the four grasses in billbug survival, number of eggs laid, and amount of feeding. In general, bermudagrass was the least favored host and the other grasses were equally adequate hosts. The results of this study indicate a need for updating host-plant lists of these four billbug species.

2002 ◽  
Vol 12 (3) ◽  
pp. 465-469 ◽  
Author(s):  
D.S. Gardner ◽  
J.A. Taylor

In 1992, a cultivar trial was initiated in Columbus, Ohio to evaluate differences in establishment and long-term performance of cultivars of tall fescue (Festuca arundinacea), creeping red fescue (F. rubra), chewings fescue (F. rubra ssp. fallax), hard fescue (F. brevipila), kentucky bluegrass (Poa pratensis), rough bluegrass (P. trivialis), and perennial ryegrass (Lolium perenne) under low maintenance conditions in a shaded environment. Fertilizer and supplemental irrigation were applied until 1994 to establish the grasses, after which no supplemental irrigation, or pesticides were applied and fertilizer rates were reduced to 48.8 kg·ha-1 (1 lb/1000 ft2) of N per year. Percentage cover and overall quality data were collected in 2000 and compared with data collected in 1994. Initial establishment success does not appear to be a good predictor of long-term success of a cultivar in a shaded environment. There was some variability in cultivar performance under shade within a given turfgrass species. The tall fescue cultivars, as a group, had the highest overall quality and percentage cover under shade, followed by the fine fescues, kentucky bluegrass, rough bluegrass, and perennial ryegrass cultivars.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 490D-490 ◽  
Author(s):  
Hoon Kang ◽  
Chiwon W. Lee

The influence of increasing levels (0.0%, 0.05%, 0.1%, 0.2%, 0.4%, 0.6%, 0.8%, 1.2%, 1.6%, and 2.0%) of NaCl on the germination of Kentucky bluegrass (Poa pratensis), annual ryegrass (Lolium multiflorum), perennial ryegrass (Lolium perenne), creeping bentgrass (Agrostis palustris), tall fescue (Festuca arundinacea), and crested wheatgrass (Agropyron cristatum) was investigated. Kentucky bluegrass, creeping bentgrass, and crested wheatgrass had a 50% reduction in germination at 0.2%, 0.6%, and 0.6% NaCl, respectively, compared to the control and completely lost germination at 0.6%, 1.2%, and 1.6% NaCl, respectively. Seed germination in both annual ryegrass and perennial ryegrass was only 50% of the control at 1.2% NaCl and completely inhibited at 2.0% NaCl. Tall fescue, red fescue, and creeping red fescue showed a 50% reduction in germination at NaCl concentrations of 1.2%, 1.2%, and 0.8%, respectively, while showing a complete inhibition of germination at 2.0%, 2.0%, and 1.6% NaCl, respectively.


2001 ◽  
Vol 11 (1) ◽  
pp. 152a
Author(s):  
Zachary J. Reicher ◽  
Clark S. Throssell ◽  
Daniel V. Weisenberger

Little documentation exists on the success of seeding cool-season turf-grasses in the late fall, winter and spring. The objectives of these two studies were to document the success of seeding Kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), and tall fescue (Festuca arundinacea Schreb.) at less-than-optimum times of the year, and to determine if N and P fertilizer requirements vary with seeding date of Kentucky bluegrass. `Ram I' Kentucky bluegrass, `Fiesta' perennial ryegrass, and `Mustang' tall fescue were seeded on 1 Sept., 1 Oct., 1 Nov., 1 Dec., 1 Mar., 1 Apr., and 1 May ± 2 days beginning in 1989 and 1990. As expected, the September seeding date produced the best establishment, regardless of species. Dormant-seeding Kentucky bluegrass and tall fescue in November, December, or March reduced the establishment time compared with seeding in April or May. Seeding perennial ryegrass in November, December, or March may not be justified because of winterkill potential. To determine the effect of starter fertilizer on seedings made at different times of the year, `Ram 1' Kentucky bluegrass was seeded 1 Sept., 1 Nov., 1 Mar., and 1 May ± 2 days in 1989 and 1990, and the seedbed was fertilized with all combinations of rates of N (0, 24, and 48 kg·ha-1) and P (0, 21, and 42 kg·ha-1). Fertilizer rate had no effect on establishment regardless of seeding date, possibly because of the fertile soil on the experimental site.


HortScience ◽  
2000 ◽  
Vol 35 (6) ◽  
pp. 1166-1169 ◽  
Author(s):  
Zachary J. Reicher ◽  
Clark S. Throssell ◽  
Daniel V. Weisenberger

Little documentation exists on the success of seeding cool-season turfgrasses in the late fall, winter and spring. The objectives of these two studies were to document the success of seeding Kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), and tall fescue (Festuca arundinacea Schreb.) at less-than-optimum times of the year, and to determine if N and P fertilizer requirements vary with seeding date of Kentucky bluegrass. `Ram I' Kentucky bluegrass, `Fiesta' perennial ryegrass, and `Mustang' tall fescue were seeded on 1 Sept., 1 Oct., 1 Nov., 1 Dec., 1 Mar., 1 Apr., and 1 May ± 2 days beginning in 1989 and 1990. As expected, the September seeding date produced the best establishment, regardless of species. Dormant-seeding Kentucky bluegrass and tall fescue in November, December, or March reduced the establishment time compared with seeding in April or May. Seeding perennial ryegrass in November, December, or March may not be justified because of winterkill potential. To determine the effect of starter fertilizer on seedings made at different times of the year, `Ram 1' Kentucky bluegrass was seeded 1 Sept., 1 Nov., 1 Mar., and 1 May ± 2 days in 1989 and 1990, and the seedbed was fertilized with all combinations of rates of N (0, 24, and 48 kg·ha-1) and P (0, 21, and 42 kg·ha-1). Fertilizer rate had no effect on establishment regardless of seeding date, possibly because of the fertile soil on the experimental site.


HortScience ◽  
2011 ◽  
Vol 46 (10) ◽  
pp. 1404-1410 ◽  
Author(s):  
Rebecca Nelson Brown ◽  
Josef H. Gorres

Highway rights-of-way are routinely planted with turfgrasses to prevent erosion, filter runoff, and improve aesthetics. However, the roadside is a harsh environment, and perennial grasses often die within the first year, leading to bare ground and annual weeds, which do not prevent erosion during the winter. To improve the survival of perennial vegetation on the roadside, it is necessary to identify the factors limiting vegetation growth and then to either identify plants that can tolerate those factors or identify ways to ameliorate the stresses while still maintaining safety. This study was designed to evaluate the effects of improved cultivars, salt tolerance, and organic matter amendments on perennial grass survival along two highways in Rhode Island. The amendments tested were processed biosolids and composted yard waste, each applied in a 50:50 mixture by volume with existing roadside soil; plain soil was included as a control. We tested 20 improved turfgrass cultivars and one seed mixture with common creeping red fescue (Festuca rubra L.) as the standard. Turfgrass species tested were perennial ryegrass (Lolium perenne L.), tall fescue (Festuca arundinacea Schreb.), red fescue, alkali grass [Puccinellia distans (Jacq.) Parl.], idaho bentgrass (Agrostis idahoensis Nash), tufted hairgrass [Deschampsia cespitosa (L.) P. Beauv.], and kentucky bluegrass (Poa pratensis L.). We found that soil amendment was more effective than either improved genetics or salt tolerance. Establishment, vertical growth, and persistence of vegetation cover were significantly improved by amendment with organic matter, particularly biosolids. In Summer 2009 (the second growing season), turf cover exceeded 50% in the biosolids plots but was below 20% in the plain soil plots with complete loss of cover in the plain soil plots at one location. Kentucky bluegrass, tall fescue, red fescue, and idaho bentgrass showed the best persistence at the species level, and there were no consistent differences among cultivars.


2004 ◽  
Vol 44 (9) ◽  
pp. 939 ◽  
Author(s):  
R. S. Tegg ◽  
P. A. Lane

The increased use of enclosed sports stadiums produces shade conditions that seriously affect the quality of turfgrass surfaces, by encouraging undesirable excess vertical succulent growth. Plant growth regulators offer an opportunity to modify a plant’s growth habit, to enable it to be better adapted to a shady environment. To examine growth response to the plant growth regulator, trinexapac-ethyl, cool-season temperate turfgrasses (Kentucky bluegrass–perennial ryegrass, Poa pratensis L./Lolium perenne L.; creeping bentgrass, Agrostis palustris Huds.; supina bluegrass, Poa supina Schrad.; and tall fescue, Festuca arundinacea Schreb.) and a warm-season species (Bermudagrass, Cynodon dactylon L.) were established in a field experiment. Main treatments were 4 levels of shade (0, 26, 56 or 65% shade), with or without trinexapac-ethyl at a rate of 0.5 kg/ha. A pot experiment measured the vertical shoot growth rates of Kentucky bluegrass–perennial ryegrass and tall fescue under 0, 56 or 65% shade, with and without trinexapac-ethyl. Both experiments were conducted under ambient conditions. Light readings taken in full sunlight, at midday through summer and autumn (major period of assessment), ranged from 1350 to 1950 μmol/m2.s. Trinexapac-ethyl reduced vertical growth of all turfgrass species. This resulted in decreased clipping weights and in clipping material having an increased dry matter percentage (i.e. reduced succulence). The impact of trinexapac-ethyl on sward quality and colour was dependent on shade level, for all species. At 56 and 65% shade, quality and colour improvement was maximised with trinexapac-ethyl application; the magnitude of improvement was dependent on species, with Kentucky bluegrass–perennial ryegrass and bentgrass showing the most benefit. It was concluded that trinexapac-ethyl improved the shade performance of a number of turfgrass species commonly used in high quality turf surfaces. It may offer the potential to reduce costs of managing turf in such an environment.


1971 ◽  
Vol 51 (6) ◽  
pp. 485-490 ◽  
Author(s):  
W. E. CORDUKES ◽  
E. V. PARUPS

Twelve cultivars representing eight grass species were each grown in a sand/vermiculite medium in the greenhouse, fed six solutions varying in chloride content for 140 days, and cut at lawn height. Six harvests were obtained and analyzed for chloride uptake. Visual ratings and yields indicated that the grasses tolerate relatively high chloride levels for a considerable time. Chloride uptake increased with time and increasing chloride content of the solutions. Uptake was less from alkaline than from acid solutions. Highland bentgrass (Agrostis tenuis Sibth.), Italian ryegrass (Lolium multiflorum Lam.) and timothy (Phleum pratense L.) were the least tolerant, while Norlea perennial ryegrass (Lolium perenne L.) and Kentucky 31 tall fescue (Festuca arundinacea Schreb.) were the most tolerant to chlorides. Kentucky bluegrass (Poa pratensis L.) and creeping red fescue (Festuca rubra L.) were intermediate in this respect.


HortScience ◽  
2002 ◽  
Vol 37 (1) ◽  
pp. 214-217 ◽  
Author(s):  
John H. Dunn ◽  
Erik H. Ervin ◽  
Brad S. Fresenburg

Various mixtures of tall fescue, Festuca arundinacea Schreb., Kentucky bluegrass, Poa pratensis L., and perennial ryegrass, Lolium perenne L., may be beneficial for turf culture because of genetic diversity and improved tolerance to environmental stresses compared with a single species. Turf-type tall fescue, dwarf tall fescue, Kentucky bluegrass, and perennial ryegrass were seeded as cultivar blends and in all possible combinations as species mixtures in two locations, irrigated and nonirrigated. Turf was mowed at 19 and 51 mm and subjected to an interval of brief, but intensive, simulated traffic. Perennial ryegrass was the dominant species in all mixtures with tall fescue, Kentucky bluegrass, or both. After 5 years, turf-type tall fescue comprised 62% of mixtures with Kentucky bluegrass when averaged over locations. Dwarf tall fescue comprised 48% of mixtures compared with Kentucky bluegrass at 44%. Kentucky bluegrass was more competitive with tall fescue in the irrigated vs. nonirrigated location. Mowing height effected small changes in populations year to year while simulated traffic had little effect on populations at 1 year following treatment. The advantage of mixing species compared with individual species to reduce disease occurrence was evident on several occasions. Our study supports earlier research reports that tall fescue will remain competitive in mixture with Kentucky bluegrass several years after seeding.


1984 ◽  
Vol 64 (2) ◽  
pp. 355-360 ◽  
Author(s):  
J. L. TOWNSHEND ◽  
R. A. CLINE ◽  
V. A. DIRKS ◽  
C. F. MARKS

The capacity of 18 turfgrasses to repress the multiplication of root-lesion nematode, Pratylenchus penetrans Cobb, was tested in a growth room. Populations varied from 230 nematodes per pot on Agrostis alba L. to 1800 per pot on Poa trivialis L. Selected grass species and cultivars were tested as cover crops in established peach, plum, and apple orchards at Vineland from 1975 to 1980. Average population levels of the root-lesion nematode and the pin nematode, Paratylenchus projectus Jenkins, did not build up substantially during this period. Tall fescue, F. arundinacea (Schreb.), had the lowest average nematode population levels as a grass cover. Tall fescue and creeping red fescue, F. rubra L., were more effective in suppressing nematodes than Kentucky bluegrass, Poa pratensis L., and orchardgrass, Dactylis glomerata L..Key words: Apple, plum, peach, root-lesion, pin-nematodes


Weed Science ◽  
1976 ◽  
Vol 24 (2) ◽  
pp. 191-193 ◽  
Author(s):  
Dayton L. Klingman ◽  
J. J. Murray

Effects of glyphosate [N-(phosphonomethyl)glycine] and paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) on turfgrass seed germination were evaluated in the greenhouse. Glyphosate caused little effect on germination of Kentucky bluegrass (Poa pratensis L.), red fescue (Festuca rubra L.), and tall fescue (F. arundinacea Schreb.) when applied to the soil immediately before seeding or when applied directly over the seed on the soil surface. Paraquat sprayed directly over the seed on the soil surface prevented germination of most of the seeds of the three grass species. Covering seeds on the soil surface with clippings from grass turf sprayed with paraquat greatly reduced germination. About half of those that germinated either died later or were severely chlorotic. Covering seeds on the surface of the soil with clippings from turf that had been sprayed with glyphosate did not significantly reduce the number of seedlings established.


Sign in / Sign up

Export Citation Format

Share Document