scholarly journals Relationship between a Reduced Aroma Production and Lipid Metabolism of Apples after Long-term Controlled-atmosphere Storage

1993 ◽  
Vol 118 (2) ◽  
pp. 243-247 ◽  
Author(s):  
A. Brackmann ◽  
J. Streif ◽  
F. Bangerth

`Golden Delicious' apples (Malus domestica Borkh.) harvested at the preclimacteric and climacteric stages of ripening were stored for up to 8 months at 1C in air and under various controlled atmosphere(s) (CA), including ultralow oxygen (ULO) storage conditions. Aroma volatiles were measured at 2-month intervals in fruit ripened for 10 days at 20C. Fruits harvested at the climacteric stage produced more volatiles during all storage conditions than preclimacteric fruit. All CA storage treatments suppressed aroma production compared to cold storage. The greatest reduction was found under ULO (1% O2) and high CO2 (3%) conditions. A partial recovery of aroma production was observed when CA fruits were subsequently stored for 14 days under cold storage conditions. Suppression of aroma production under ULO conditions seems to be related to low fatty acid synthesis and/or degradation, and is restricted to volatiles having a straight C chain. Production of branched C-chain aroma compounds was suppressed by high CO2 concentrations. The reduced capacity of aroma production during shelf life after ULO storage is confined to apple cultivars producing mainly ester compounds with a straight C-chain, e.g., `Golden Delicious'.

2014 ◽  
Vol 86 (1) ◽  
pp. 485-494 ◽  
Author(s):  
CRISTIANO ANDRÉ STEFFENS ◽  
CASSANDRO V.T. DO AMARANTE ◽  
ERLANI O. ALVES ◽  
AURI BRACKMANN

The objective of this study was to evaluate the effect of controlled atmosphere (CA) on quality preservation of ‘Laetitia’ plums, mainly on internal breakdown, in order to determine the best CA storage conditions. Two experiments were carried out one in 2010, and another in 2011. In 2010, besides cold storage (CS; 21.0 kPa O2 + 0.03 kPa CO2), the fruits were stored under the following CA conditions (kPa O2+kPa CO2): 1+3, 1+5, 2+5, 2+10, and 11+10. In 2011, the fruits were stored under CS and CA of 1+0, 1+1, 2+1, and 2+2. The fruit stored under different CA conditions had lower respiration and ethylene production, better preservation of flesh firmness, texture and titratable acidity, lower skin red color, and lower incidence of skin cracking than the fruit in CS. In 2010, the fruit under CA with 2+5, 1+5, and 1+3 had a pronounced delay in ripening, although it exhibited a high incidence of internal breakdown. In 2011, the CA conditions with 2+1 and 2+2 provided the best delay in ripening and a reduced incidence of internal breakdown. The best CA condition for cold storage (at 0.5°C) of ‘Laetitia’ plums is 2 kPa O2 + 2 kPa CO2.


2016 ◽  
Vol 1 (2) ◽  
pp. 55-66
Author(s):  
Adriano Arriel Saquet

The aim of this research was to investigate the aroma profile and changes of individual volatiles during regular air (RA) and controlled atmosphere (CA) storage of ‘Conference’ pear during six months at 0 °C. Gas combinations used were: RA; 0.5 kPa O2 + 0.5 kPa CO2; 1.5 kPa O2 + 1.5 kPa CO2; 0.5 kPa O2 + 6.0 kPa CO2 and 3.0 kPa O2 + 6.0 kPa CO2. The main compounds found during ripening of ‘Conference’ pear were butyl acetate (34 %), ethyl acetate (16 %), hexyl acetate (12 %), ethanol (11 %) and methyl acetate (5 %). Fruits under RA produced the highest amounts of volatiles and intermediary emissions were measured under 1.5 kPa O2 + 1.5 kPa CO2 and 3.0 kPa O2 + 6.0 kPa CO2. The storage under 0.5 kPa O2 + 0.5 kPa CO2 and 0.5 kPa O2 + 6.0 kPa CO2 induced the strongest inhibition in total aroma production. Under CA, the emission of ethyl acetate was not significantly suppressed even under 0.5 kPa O2 + 6.0 kPa CO2. Ethanol release increased during shelf-life in fruits of all storage conditions. Butyl acetate was only slightly suppressed even under 0.5 kPa O2 + 6.0 kPa CO2 and hexyl acetate, was significantly reduced only under 0.5 kPa O2 combined with 6.0 kPa CO2.


1993 ◽  
Vol 118 (4) ◽  
pp. 486-489 ◽  
Author(s):  
S.R. Drake

Controlled atmosphere (CA) storage for 30 or 60 days reduced quality losses for `Jonagold', `Golden Delicious', `Delicious', `Granny Smith', and `Fuji' apples (Malus domestica Borkh.). After 30 days `Jonagold' and `Golden Delicious' from CA were firmer, had higher acidity, and were less yellow (more green) than apples from regular atmosphere (RA) storage. `Delicious' and `Granny Smith' were firmer after 60 days of CA storage than fruit from RA. In addition, `Granny Smith' from CA had more acid and were greener than apples from RA. After 8 days of ambient storage, little loss in firmness and no loss in acid content occurred with `Jonagold' or `Golden Delicious' from CA compared to the significant loss in firmness and acid when stored in RA. After ambient storage for 8 days, `Jonagold', `Golden Delicious', and `Granny Smith' retained a freshly harvested apple color with more green and less yellow development when stored in CA rather than RA. In `Fuji', the treatments had no effect except for improved acid retention if stored in CA. A combination of 30 days CA followed by 30 days RA produced `Jonagold', `Golden Delicious', and `Delicious' that were superior in quality to apples from 60 days RA.


2005 ◽  
Vol 45 (12) ◽  
pp. 1635 ◽  
Author(s):  
A. Uthairatanakij ◽  
P. Penchaiya ◽  
B. McGlasson ◽  
P. Holford

Low temperature disorders of nectarines are thought to be expressions of chilling injury. Chilling injury is a form of stress usually associated with increased synthesis of ethylene and its immediate precursor, aminocyclopropane-1-carboxylic acid (ACC). However, other mechanisms for the development of chilling injury have been proposed. To help determine the nature of the processes leading to chilling injury in nectarines (Prunus persica) and how the gaseous composition of the storage atmosphere effects the development of low temperature disorders, levels of ACC and conjugated ACC were measured in fruit of the cv. Arctic Snow. These compounds were measured in fruit ripened at 20°C immediately after harvest, in fruit on removal from cold storage and in fruit ripened at 20°C following cold storage. During storage, fruit were kept at 0°C in the 4 following atmospheres: air; air + 15% CO2; air + 15 µL/L ethylene; and air + 15% CO2 + 15 µL/L ethylene. Concentrations of ACC remained low in all treatments and no significant changes in ACC levels due to added ethylene or CO2 were observed. Concentrations of conjugated ACC were about 10-times that of ACC and again were not influenced by the composition of the storage atmosphere. No significant changes in either ACC or conjugated ACC were observed until after flesh bleeding, the major symptoms of low temperature disorder expressed in these fruit, had begun to appear. It was concluded that disorders in nectarines stored at low temperatures are not a stress response involving a disruption of ethylene metabolism but may be associated with differential changes in the metabolism of enzymes associated with normal ripening.


1986 ◽  
Vol 118 (5) ◽  
pp. 493-497 ◽  
Author(s):  
N.P.D. Angerilli ◽  
A.P. Gaunce ◽  
D.M. Logan

AbstractRed Delicious and Winesap apples infested with San Jose scale were placed into either regular (CS) or controlled-atmosphere (CA) cold storage, either with or without prior fumigation with methyl bromide. Fumigation with a dose of 32 g/m3 killed all infesting stages of the scale on Red Delicious apples in CS after 31 days and in CA after 137 days. Complete scale mortality on Winesap apples occurred after 167 days in CA and in CS if previously fumigated.


2014 ◽  
Vol 26 (2) ◽  
pp. 147-153 ◽  
Author(s):  
Karolina Kozos ◽  
Ireneusz Ochmian ◽  
Piotr Chełpiński

ABSTRACT Controlled atmosphere storage allows for the long-term and short-term storage of fruit without a significant decrease in quality, resulting in a longer shelflife of fresh fruit. The Department of Horticulture at the West Pomeranian University of Technology in Szczecin conducted research on the effects of post-harvest precooling (3-4°C within two hours) and storage conditions (conventional cold room and controlled atmosphere storage) on fruit firmness, chemical composition, colour and weight loss. After six weeks of storage, it was found that the quality of fruit had declined. In comparison with fresh fruit, the harvest was found to have lost weight and darkened in colour. In addition, a decrease in firmness and the content of ascorbic acid and polyphenolic compounds was also observed. The fruits that were stored in a cold room with a controlled atmosphere and rapidly chilled immediately after harvest were the least affected. In addition, the research showed that there was a high correlation between the anthocyanin index and the polyphenol content in the fruits. To maintain the high quality of the fruit, the fruit must be very rapidly cooled soon after harvest and stored under optimal conditions - a cold room with a controlled atmosphere.


HortScience ◽  
2010 ◽  
Vol 45 (11) ◽  
pp. 1708-1712 ◽  
Author(s):  
C.B. Watkins ◽  
F.W. Liu

The storage potential of ‘Empire’ apples [Malus ×sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] in controlled atmosphere storage has been studied. Fruit were treated with a range of partial pressures of CO2 (pCO2) from 0 to 5 kPa at storage temperatures of 0, 0.5, and 3 °C. The predominant storage disorders that developed were external CO2 injury, flesh browning (chilling injury), senescent breakdown (soft flesh browning), and core browning. All disorders except external CO2 injury increased with longer storage periods. The incidence of external CO2 injury was usually greater with higher storage temperature, whereas flesh browning was worst at lower storage temperatures and senescent breakdown was higher at warmer storage temperatures. The effect of storage temperature on core browning was not consistent. External CO2 injury, flesh browning, and core browning incidences were higher with increasing pCO2, especially above 2 kPa. Flesh firmness was lowest at warmer storage temperatures and in the absence of CO2. Orchard to orchard variation for all factors was high. Relationships of disorders with mineral concentrations were specific to disorder and storage conditions. The results suggest that ‘Empire’ should be stored at 1 to 2 °C, reflecting a compromise between risk of flesh browning at 0 °C and risk of senescent breakdown and unacceptably soft fruit at 3 °C and that pCO2 should be maintained below 2 kPa and closer to 1 kPa.


Sign in / Sign up

Export Citation Format

Share Document