scholarly journals Inheritance of Male Sterility in Lesquerella fendleri

2001 ◽  
Vol 126 (6) ◽  
pp. 738-743 ◽  
Author(s):  
David A. Dierig ◽  
Pernell M. Tomasi ◽  
Dennis T. Ray

Lesquerella fendleri (Gray) Wats. (lesquerella, Brassicaceae), native to the southwestern United States, is a potentially useful industrial oilseed crop. The seed oil contains hydroxy fatty acids, similar to castor (Ricinus communis L.) seed oil. The unique properties of the oil, along with coproducts, allow additional applications that would not compete with castor oil. Plants with vestigial anthers (male-sterile) were discovered in a greenhouse-grown, nonselected population in 1993. The inheritance of the trait was investigated through four crop seasons. Crosses were made among male-sterile and male-fertile plants from an open pollinated population, thus, they were heterozygous for many traits. Statistical analysis indicated that male sterility is expressed as a result of two nonlinked nuclear genes with epistatic relations and different cytoplasms, which cause partial or total fertility restoration. These ratios fit a 13:3 epistatic ratio, indicating that male sterility is controlled by homozygous recessive alleles at one locus in combination with at least one dominant allele at the second locus, i.e., ms1ms1 Ms2_. Some cross results were skewed in favor of fertile phenotypes presumably due to cytoplasmic effects causing partial fertility restoration. Male-sterile lines could be used for hybrid development and this information will be helpful in implementing a strategy for hybrid development. Hybrid plants and higher yields will enhance the potential for commercialization of this new alternative crop.

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 483C-483
Author(s):  
D.A. Dierig ◽  
P.M. Tomasi ◽  
T.A. Coffelt

Lesquerella fendleri (Gray) Wats., Brassicaceae, is a potential oilseed crop native to the southwestern U.S. The seed oil contains hydroxy fatty acids, similar to castor. Unique properties of the oil, along with coproducts, allow additional applications that would not be in competition with castor. Plants with vestigial anthers were discovered in a bulk population growing in the greenhouse in 1993. The inheritance of the trait was investigated the following three crop seasons. Crosses were made among sterile and fertile plants and reciprocals among fertile plants. Chi-square results indicate the male sterility trait is expressed by a recessive nuclear gene with cytoplasmic influence restoring fertility. Cytoplasmic male sterile lines can be utilized for development of hybrids. Development of lines without male sterility should lead to higher yields than current bulk populations of lesquerella. Hybrid plants and higher yields will enhance the commercialization potential of this new, alternative crop.


Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1317-1328
Author(s):  
Anita A de Haan ◽  
Hans P Koelewijn ◽  
Maria P J Hundscheid ◽  
Jos M M Van Damme

Male fertility in Plantago lanceolata is controlled by the interaction of cytoplasmic and nuclear genes. Different cytoplasmic male sterility (CMS) types can be either male sterile or hermaphrodite, depending on the presence of nuclear restorer alleles. In three CMS types of P. lanceolata (CMSI, CMSIIa, and CMSIIb) the number of loci involved in male fertility restoration was determined. In each CMS type, male fertility was restored by multiple genes with either dominant or recessive action and capable either of restoring male fertility independently or in interaction with each other (epistasis). Restorer allele frequencies for CMSI, CMSIIa and CMSIIb were determined by crossing hermaphrodites with “standard” male steriles. Segregation of male steriles vs. non-male steriles was used to estimate overall restorer allele frequency. The frequency of restorer alleles was different for the CMS types: restorer alleles for CMSI were less frequent than for CMSIIa and CMSIIb. On the basis of the frequencies of male steriles and the CMS types an “expected” restorer allele frequency could be calculated. The correlation between estimated and expected restorer allele frequency was significant.


2011 ◽  
Vol 24 (1) ◽  
pp. 33-40
Author(s):  
M. J. Hasan ◽  
M. U. Kulsum ◽  
A. Ansari ◽  
A. K. Paul ◽  
P. L. Biswas

Inheritance of fertility restoration was studied in crosses involving ten elite restorer lines of rice viz. BR6839-41-5-1R, BR7013-62-1-1R, BR7011-37-1-2R, BR10R, BR11R, BR12R, BR13R, BR14R, BR15R and BR16R and one male sterile line Jin23A with WA sources of cytoplasmic male sterility. The segregation pattern for pollen fertility of F2 and BC1 populations of crosses involving Jin23A indicated the presence of two independent dominant fertility restoring genes. The mode of action of the two genes varied in different crosses revealing three types of interaction, i.e. epistasis with dominant gene action, epistasis with recessive gene action, and epistasis with incomplete dominance.DOI: http://dx.doi.org/10.3329/bjpbg.v24i1.16997


Author(s):  
Amit Kumar ◽  
Anjani Kumar ◽  
Chandan Roy

Among the different mechanism of male sterility operated in the Brassica group crop. Cytoplasmic male sterility mechanism is most suitable for hybrid development in cauliflower because here the curd (intermediate stage) is an edible part of the cauliflower. Further, there is no requirement of restorer line in this case as required in other seed crop. For the multiplication and maintenance of the different lines (A line and B line), sib mating and selfing is not always desirable. In fact, in such situation doubled haploid production through microspore culture is a more appropriate mechanism. Apart from this, the undesirable effect of integration of male sterile cytoplasm can be mitigated by adopting the repeated back crossing, through chloroplast substitution or somatic hybridization mechanism.


2021 ◽  
Author(s):  
Nari Yu ◽  
Sunggil Kim

Abstract Cytoplasmic male-sterility (CMS) has been exclusively used to produce F1 hybrid seeds of onion (Allium cepa L.). A single nuclear locus, Ms, is known to restore male-fertility of CMS in onions. Unstable male-sterile onions producing a small amount of pollen grains have been identified in a previous study. When such unstable male-sterile onions were crossed with stable male-sterile onions containing CMS-T cytoplasm, male-fertility was completely restored, although genotypes of the Ms locus were homozygous recessive. Inheritance patterns indicated that male-fertility restoration was controlled by a single locus designated as Ms2. A combined approach of bulked segregant analysis and RNA-seq was used to identify candidate genes for the Ms2 locus. High resolution melting (HRM) markers were developed based on single nucleotide polymorphisms (SNPs) detected by RNA-Seq. Comparative mapping of the Ms2 locus showed that Ms2 was positioned at the end of chromosome 2 with a distance of approximately 70 cM away from the Ms locus. Although 38 contigs containing reliable SNPs were analyzed using recombinants selected from 1,344 individuals, no contig showed perfect linkage to Ms2. Interestingly, transcription levels of orf725, a CMS-associated gene in onions, were significantly reduced in male-fertile individuals of segregating populations. However, no significant change in its transcription level was observed in individuals of a segregating population with male-fertility phenotypes determined by the Ms locus, suggesting that male-fertility restoration mechanism of Ms2 might be different from that of the Ms locus.


Author(s):  
Kammili Anjani Kammili Anjani

Abstract Castor (Ricinus communis L.) has been transformed from a wasteland colonizer to an important industrial oilseed crop. Its seed oil is one of the most sought-after vegetable oils because of its rich properties and variety of end-users. Castor is an ancient crop but its production now has been limited mainly to India, China and Brazil, for many reasons. Castor oil is a hot market commodity product. It has been recently recognized as an efficient feedstock for biodiesel production. Increasing demand world over for biofuel resources and many recently identified industrial uses of castor oil have escalated castor oil demand. Global demand for castor oil is rising constantly at 3-5% per annum. In the last decade, many countries have started making serious exploratory efforts at growing castor as there is a tremendous scope to establish castor as a supplementary crop production option to farmers and to provide significant returns on investment given high global demand for castor oil. In view of the increasing worldwide interest in castor oil, this review evaluates the global scenario of castor cultivation, exports and imports of castor oil, new interests in castor oil and genetic improvement in productivity. In addition, the current research challenges and priorities have been discussed in the review.


2021 ◽  
Vol 12 ◽  
Author(s):  
Saurabh Singh ◽  
Reeta Bhatia ◽  
Raj Kumar ◽  
Tusar K. Behera ◽  
Khushboo Kumari ◽  
...  

Mitochondrial markers can be used to differentiate diverse mitotypes as well as cytoplasms in angiosperms. In cauliflower, cultivation of hybrids is pivotal in remunerative agriculture and cytoplasmic male sterile lines constitute an important component of the hybrid breeding. In diversifying the source of male sterility, it is essential to appropriately differentiate among the available male sterile cytoplasms in cauliflower. PCR polymorphism at the key mitochondrial genes associated with male sterility will be instrumental in analyzing, molecular characterization, and development of mitotype-specific markers for differentiation of different cytoplasmic sources. Presence of auto- and alloplasmic cytonuclear combinations result in complex floral abnormalities. In this context, the present investigation highlighted the utility of organelle genome-based markers in distinguishing cytoplasm types in Indian cauliflowers and unveils the epistatic effects of the cytonuclear interactions influencing floral phenotypes. In PCR-based analysis using a set of primers targeted to orf-138, 76 Indian cauliflower lines depicted the presence of Ogura cytoplasm albeit the amplicons generated exhibited polymorphism within the ofr-138 sequence. The polymorphic fragments were found to be spanning over 200–280 bp and 410–470 bp genomic regions of BnTR4 and orf125, respectively. Sequence analysis revealed that such cytoplasmic genetic variations could be attributed to single nucleotide polymorphisms and insertion or deletions of 31/51 nucleotides. The cytoplasmic effects on varying nuclear-genetic backgrounds rendered an array of floral abnormalities like reduction in flower size, fused flowers, splitted style with the exposed ovule, absence of nonfunctional stamens, and petaloid stamens. These floral malformations caused dysplasia of flower structure affecting female fertility with inefficient nectar production. The finding provides an important reference to ameliorate understanding of mechanism of cytonuclear interactions in floral organ development in Brassicas. The study paves the way for unraveling developmental biology of CMS phenotypes in eukaryotic organisms and intergenomic conflict in plant speciation.


Genetics ◽  
1982 ◽  
Vol 102 (2) ◽  
pp. 285-295
Author(s):  
H Ahokas

ABSTRACT A new cytoplasmic male sterility in barley (Hordeum vulgare s.l.) is described and designated as msm2. The cytoplasm was derived from a selection of the wild progenitor of barley (H. vulgare ssp. spontaneum). This selection, 79BS14-3, originates from the Southern Coastal Plain of Israel. The selection 79BS14-3 has a normal spike fertility in Finland. When 79BS14-3 was crossed by cv. Adorra, the F1 displayed partial male fertility and progeny of recurrent backcrosses with cv. Adorra were completely male sterile. Evidently 79BS14-3 is a carrier of a recessive or semidominant restorer gene of fertility. The dominant restorer gene Rfm1a for another cytoplasmic male sterility, msm1, is also effective in msm2 cytoplasm. The different partial fertility restoration properties of msm2 and msm1 cause these cytoplasms to be regarded as being distinct. Seventy spontaneum accessions from Israel have been studied for their capacity to produce F1 restoration of male fertility both in msm1 and in msm2 cytoplasms with a cv. Adorra-like seed parent (nuclear gene) background. The msm2 cytoplasm shows partial restoration more commonly than msm1 in these F1 combinations. The mean restoration percentage per accession for msm2 is 28, and for msm1 4. Most of the F1 seed set differences of the two cytoplasms are statistically significant. When estimated with partially restored F1 combinations, msm2 cytoplasm appeared to be about 50 times more sensitive to the male fertility-promoting genes present in the spontaneum accessions. The spontaneum sample from Central and Western Negev, which has been found to be devoid of restoration ability in msm1 cytoplasm, had only low partial restoration ability in msm2 (mean 0.3%). The female fertility of msm2 appears normal. The new msm2 cytoplasm could be useful in producing hybrid barley.


2010 ◽  
Vol 135 (1) ◽  
pp. 49-52 ◽  
Author(s):  
Sergio Melgar ◽  
Michael J. Havey

The most commonly used source of cytoplasmic male sterility in onion (Allium cepa) is controlled by the interaction of the cytoplasm [male-sterile (S) or normal male-fertile (N)] and one nuclear male-fertility-restoration locus (Ms). Scoring of genotypes at Ms is generally done by testcrossing male-fertile to male-sterile (S msms) plants, followed by scoring of testcross progenies for male-fertility restoration. We identified two N-cytoplasmic families, one that was homozygous dominant and the other segregating at Ms. Plants from each of these two families were individually testcrossed to male-sterile onion. Nuclear restoration of male fertility in testcross progenies was evaluated in the field over 4 years. For male plants homozygous dominant at Ms, we expected testcross families to show 100% male-fertility restoration, but observed mean values between 46% and 100%. For plants segregating at Ms, we again observed lower than expected frequencies of male-fertility restoration. These results demonstrate that the dominant Ms allele shows reduced penetrance, requiring that male-fertility restoration be scored over years to more confidently assign genotypes at Ms.


Sign in / Sign up

Export Citation Format

Share Document