scholarly journals Microsatellite Marker Development in Rose and its Application in Tetraploid Mapping

2006 ◽  
Vol 131 (3) ◽  
pp. 380-387 ◽  
Author(s):  
L.H. Zhang ◽  
D.H. Byrne ◽  
R.E. Ballard ◽  
S. Rajapakse

Microsatellite or simple sequence repeat (SSR) markers were developed from Rosa wichurana Crépin to combine two previously constructed tetraploid rose (Rosa hybrida L.) genetic maps. To isolate SSR-containing sequences from rose a small-insert genomic library was constructed from diploid Rosa wichurana and screened with several SSR probes. Specific primers were designed for 43 unique SSR regions, of which 30 primer pairs gave rise to clear PCR products. Seventeen SSR primer pairs (57%) produced polymorphism in the tetraploid rose 90-69 mapping family. These markers were incorporated into existing maps of the parents 86-7 and 82-1134, which were constructed primarily with AFLP markers. The current map of the male parent, amphidiploid 86-7, consists of 286 markers assigned to 14 linkage groups and covering 770 cm. The map of the female tetraploid parent, 82-1134, consists of 256 markers assigned to 20 linkage groups and covering 920 cm. Nineteen rose SSR loci were mapped on the 86-7 map and 11 on the 82-1134 map. Several homeologous linkage groups within maps were identified based on SSR markers. In addition, some of the SSR markers provided anchoring points between the two parental maps. SSR markers were also useful for joining small linkage groups. Based on shared SSR markers, consensus orders for four rose linkage groups between parental maps were generated. Microsatellite markers developed in this study will provide valuable tools for many aspects of rose research including future consolidation of diploid and tetraploid rose genetic linkage maps, genetic, phylogenetic and population analyses, cultivar identification, and marker-assisted selection.

2010 ◽  
Vol 135 (6) ◽  
pp. 511-520 ◽  
Author(s):  
Karen R. Harris-Shultz ◽  
Brian M. Schwartz ◽  
Wayne W. Hanna ◽  
Jeff A. Brady

Genetic linkage maps of bermudagrass (Cynodon spp.) species using 118 triploid individuals derived from a cross of T89 [C. dactylon (2n = 4x = 36)] and T574 [C. transvaalensis (2n = 2x = 18)] were enriched with expressed sequence tags-derived simple sequence repeat (EST-SSR) markers. Primers were developed from 53 ESTs containing SSRs producing 75 segregating markers from which 28 could be mapped to the T89 and T574 genetic maps. With the addition of previously generated marker data, 26 T89 linkage groups and eight T574 linkage groups were formed using a log-of-odds (LOD) value of 4.0. The T89 and T574 linkage maps spanned 1055 cM and 311.1 cM and include 125 and 36 single-dose amplified fragments (SDAFs), respectively. Many of the SDAFs displayed disomic segregation and thus T89 may be a segmental allotetraploid or an allotetraploid. The additional EST-SSR markers add value to the maps by increasing marker density and provide markers that can be easily transferred to other bermudagrass populations. Furthermore, EST-SSRs can be immediately used to assess genetic diversity, identify non-mutated cultivars of bermudagrass, confirm pedigrees, and differentiate contaminants from cultivars derived from ‘Tifgreen’.


2021 ◽  
Author(s):  
Masoomeh Hosseini Nickravesh ◽  
Kourosh Vahdati ◽  
fatemeh amini ◽  
Reza Amiri ◽  
Keith Woeste

Abstract The utility of seventeen Microsatellite (SSR) markers and fifteen inter simple sequence repeats (ISSR) markers for the identification of twenty eight ramets of 11 varieties of walnut (Juglans regia) was explored. Thirty nine individual genomes were screened using 61 and 38 scorable fragments from SSR and ISSR markers, respectively. The least polymorphic SSR locus was WGA004 (two alleles) and the most polymorphic (5 alleles) was WGA276. Polymorphism information content values ranged from 0.08 (WGA004) to 0.43 (WGA032) in SSR markers and from 0.11 (AGA (AC)7) to 0.49 (CAC(TGT)5) in ISSR markers, with an average of 0.29 and 0.19, respectively. In most cases, grafted varieties with identical names also had the same microsatellites profile. The principal coordinate analysis and clustering (UPGMA) based on the combined marker set emphasized two failures in grafting or off-types, ramets identified as Serr 4 (S4) and Vina 1 (V1). The presence of two off-type ramets in the walnut research orchard emphasizes the importance of using molecular certification for proving true-to-type of walnut orchards. Using 13 polymorphic SSRs, we tabulated a DNA fingerprint chart of 11 walnut varieties. Except for ‘Chandler’, each cultivar could be distinguished using a combination of only two SSR loci. The 13 SSRs markers evaluated in this study could be used in future to identify clones produced from the varieties.


2021 ◽  
Vol 117 (3) ◽  
pp. 1
Author(s):  
Zahra SHEKARI ◽  
Zahra TAHMASEBI ◽  
Homayoun KANOUNI ◽  
Ali ashraf MEHRABI

<p class="042abstractstekst">Root structure modification can improve important agronomic traits including yield, drought tolerance and nutrient deficiency resistance. The aim of the present study was to investigate the diversity of root traits and to find simple sequence repeat (SSR) markers linked to root traits in chickpea (<em>Cicer arietinum </em>L.). This research was performed using 39 diverse accessions of chickpea. The results showed that there is significant variation in root traits among chickpea genotypes. A total of 26 alleles were detected 26 polymorphic bands were produced by 10 SSR markers in the eight linkage groups (LG). The results indicated that there is substantial variability present in chickpea<strong> </strong>germplasm for root traits.<strong> </strong>By analyzing the population structure, four subpopulations were identified.<strong> </strong>PsAS2, AF016458, 16549 and 19075 SSR markers on LG1, LG3, LG2 and LG1 linkage group respectively were<strong> </strong>associated with root traits<strong>.</strong> The research findings provide valuable information for improving root traits for chickpea breeders.</p>


2016 ◽  
Vol 8 (3) ◽  
pp. 380-385 ◽  
Author(s):  
Aissam EL FINTI ◽  
Driss TALIBI ◽  
Mouhamed SIDKI ◽  
Abdelhamid E. MOUSADIK

Estimation of genetic parameters at SSR loci can be applied for assessing the differences between cultivars or populations, either for variety distinction or the management of genetic resources. In this study, 13 Opuntia ficus-indica cultivars were analyzed using 10 SSR markers selected for studying the genetic diversity among these chosen cultivars. Over the 10 SSR markers, a total of 45 reproducible bands were scored with an average of 4.5 alleles/locus, while the observed heterozygosity (Ho) values of amplified loci ranged from 0.15 (SSR1) to 0.92 (SSR2 and SSR 11). Genetic distance analysis of the 13 cultivars showed a large genetic differentiation (GST = 0.47) and high number of different groups. Most of the accessions were not found to be clustered according to their eco-geographical origin. In addition, each cultivar was characterized by its own multiallelic combination between loci. The results revealed the usefulness of SSR in understanding of genetic diversity in Moroccans Barbary fig cultivars, thus being helpful to set up rational decisions concerning the establishment of a national reference collection.


Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 644 ◽  
Author(s):  
Li Dong ◽  
Yuhan Sun ◽  
Keqi Zhao ◽  
Jing Zhang ◽  
Yuwei Zhang ◽  
...  

Black locust (Robinia pseudoacacia L.) is an economically and ecologically important tree species which is used for pillar construction, honey production and soil improvement. More EST-SSR (Expressed sequence tag simple sequence repeat) markers of black locust can be used as a complement and improvement of Genomic-SSR markers for the identification of the function of gene and the construction of genetic map. Additionally, currently there is no simple method for identifying black locust cultivars. In this study, we obtained 2702 unigenes from 3095 expressed sequence tags (ESTs) from the National Center of Biotechnology Information (NCBI) database to identify simple sequence repeats (SSRs) in R. pseudoacacia samples. A total of 170 SSR loci were found to be distributed in 162 non-redundant sequences with a frequency of 6.29%. Dinucleotide repeats were the most predominant types among microsatellites (62.35%), followed by tri-nucleotide repeats (25.88%); the remaining SSRs accounted for less than 12%. The repeat motifs AG/TC (29.25%) and CT/GA (29.25%) were the most abundant among dinucleotides, and AAT/TTA (15.91%) was the most common among tri-nucleotides. A total of 62 primer pairs were designed to screen polymorphic and stable SSR loci. The resulting 25 EST-SSR markers capable of amplifying polymorphic, stable, and repeatable products. Eight newly developed EST-SSR markers and four published SSR markers were selected for DNA fingerprinting and genetic diversity analysis of the 123 main R. pseudoacacia cultivars in China. The 12 SSR loci amplified 102 alleles, with an average number of alleles per locus of 8.5 (range 4–15). The average polymorphism information content at the 12 SSR loci for the 123 cultivars was 0.670 (range 0.427–0.881). The 123 cultivars clustered into six main groups based on similarity coefficients, with most cultivars in one subgroup. Fingerprinting was performed using eight SSR markers; 110 black locust cultivars were distinguished. The results of this study increase the availability of EST-SSR markers in black locust and make it a simple method for checking the collection, the certification, and the correct attribution of clones and cultivars.


Genome ◽  
2012 ◽  
Vol 55 (6) ◽  
pp. 459-470 ◽  
Author(s):  
Ximei Li ◽  
Daojun Yuan ◽  
Hantao Wang ◽  
Xuemei Chen ◽  
Bin Wang ◽  
...  

Simple sequence repeat (SSR) markers are widely used in plant genetics and breeding. However, there are many SSR markers that do not reveal polymorphism in cotton. Traditional SSR genotyping methods only provide information on product sizes. This leaves many marker polymorphism undetected, thus, lowering the utility of SSRs. In the present study, monomorphic SSRs between two mapping parents, ‘Emian22’ and 3-79, were subjected to single-strand conformation polymorphism (SSCP) analysis to reveal polymorphism. Of the 4194 monomorphic SSR primer pairs, 158 pairs (3.77%) showed polymorphism and revealed 174 polymorphic loci. Sequence analysis showed that the differences in PCR products between the mapping parents were solely due to base transition or transversion, which was in agreement with SSCP principles. SSCP also revealed SSRs with motifs of AT/TA and GAA/CTT were more polymorphic in dinucleotides and trinucleotides, respectively. Genetic mapping integrated 160 loci into our interspecific BC1 linkage map, 5 of which associated with QTLs related to cotton fiber quality. The technique discussed in the present study enables us to detect polymorphism of monomorphic SSRs, and increase the utilization efficiency of the existing SSR primers.


2006 ◽  
Vol 131 (4) ◽  
pp. 506-512 ◽  
Author(s):  
Thomas M. Davis ◽  
Laura M. DiMeglio ◽  
Ronghui Yang ◽  
Sarah M.N. Styan ◽  
Kim S. Lewers

The cultivated strawberry, Fragaria ×ananassa Duchesne ex Rozier, originated via hybridization between octoploids F. chiloensis (L.) Mill. and F. virginiana Mill. These three octoploid species are thought to share a putative genome composition of AAA`A'BBB`B'. Diploid F. vesca L., is considered to have donated the A genome. Current attention to the development of a diploid model system for strawberry genomics warrants the assessment of simple sequence repeat (SSR) marker transferability between the octoploid and diploid species in Fragaria L. In the present study, 23 SSR primer pairs derived from F. ×ananassa `Earliglow' by genomic library screening were evaluated for their utility in six diploid Fragaria species, including eight representatives of F. vesca, four of F. viridis Weston, and one each of F. nubicola (Hook. f.) Lindl. ex Lacaita, F. mandshurica Staudt, F. iinumae Makino, and F. nilgerrensis Schltdl. ex J. Gay. SSR primer pair functionality, as measured by amplification success rate (= 100% - failure rate) in each species, was ranked (from highest to lowest) as follows: F. vesca (98.4%) > F. iinumae (93.8%) = F. nubicola (93.8%) > F. mandshurica (87.5%) > F. nilgerrensis (75%) > F. viridis (73.4%). The extent to which these octoploid-derived SSR primer pairs generated markers that could be added to the F. vesca linkage map also was assessed. Of the 13 F. ×ananassa SSR markers that segregated codominantly in the F. vesca mapping population, 11 were assigned to linkage groups based upon close linkages to previously mapped loci. These markers were distributed over six of the seven F. vesca linkage groups, and can serve as anchor loci defining these six groups for purposes of comparative mapping between F. vesca and F. ×ananassa.


2014 ◽  
Vol 139 (5) ◽  
pp. 507-517 ◽  
Author(s):  
Xiaoying Li ◽  
Hongxia Xu ◽  
Jianjun Feng ◽  
Junwei Chen

Deep transcriptome sequencing allows for the acquisition of large-scale microsatellite information, and it is especially useful for genetic diversity analysis and mapping in plants without reference genome sequences. In this study, a total of 14,004 simple sequence repeats (SSRs) were mined from 10,511 unigenes screening of 63,608 nonredundant transcriptome unigenes in loquat (Eriobotrya japonica) with a frequency of 22 SSR loci distributed over 100 unigenes. Dinucleotide and trinucleotide repeat SSRs were dominant, accounting for 20.62%, and 42.1% of the total, respectively. Seventy primer pairs were designed from partial SSRs and used for polymerase chain reaction (PCR) amplification. Of these primer pairs, 54 exhibited amplification and 33 were polymorphic. The number of alleles at these loci ranged from two to 17, and the polymorphism information content values ranged from 0.24 to 0.89. We tested the transferability of 33 SSR polymorphic primer pairs in apple and pear, and the transferability rates in these two species were 90.9% and 87.9%, respectively. A high level of marker polymorphism was observed in apple [Malus ×domestica (66.7%)], whereas a low level was observed in pear [Pyrus sp. (51.5%)]. In addition, the PCR products from seven SSR primer pairs were selected for sequence analysis, and 89.2% of the fragments were found to contain SSRs. SSR motifs were conserved among loquat, apple, and pear. According to our sequencing results for real SSR loci, ≈12,490 SSR loci were present in these loquat unigenes. The cluster dendrogram showed a distinct separation into different groups for these three species, indicating that these SSR markers were useful in the evaluation of genetic relationships and diversity between and within the species of Maloideae in the Rosaceae. The results of our identified SSRs should be useful for genetic linkage map construction, quantitative trait locus mapping, and molecular marker-assisted breeding of loquat and related species.


2009 ◽  
Vol 134 (5) ◽  
pp. 535-542 ◽  
Author(s):  
Àngel Fernández i Martí ◽  
José M. Alonso ◽  
María T. Espiau ◽  
María J. Rubio-Cabetas ◽  
Rafel Socias i Company

Genetic diversity of the Spanish national almond (Prunus amygdalus Batsch) collection was characterized with 19 simple sequence repeat (SSR) markers selected because of their polymorphism in almond and other Prunus L. species. A total of 93 almond genotypes, including 63 Spanish cultivars from different growing regions, as well as some international cultivars and breeding releases were analyzed. All primers produced a successful amplification, giving a total of 323 fragments in the genotypes studied, with an average of 17 alleles per SSR, ranging from 4 (EPDCU5100) to 33 (BPPCT038). Allele size ranged from 88 bp at locus PMS40 to 260 bp at locus CPPCT022. The heterozygosity observed (0.72) was much higher not only than in other Prunus species, but also than in other almond pools already studied. The dendrogram generated using the variability observed classified most of the genotypes according to their geographical origin, confirming the particular evolution of different almond ecotypes. The SSR markers have consequently shown their usefulness for cultivar identification in almond, for establishing the genetic closeness among its cultivars, and for establishing genealogical relationships.


HortScience ◽  
2007 ◽  
Vol 42 (1) ◽  
pp. 20-27 ◽  
Author(s):  
Jack E. Staub ◽  
Zhanyong Sun ◽  
Sang-Min Chung ◽  
Richard L. Lower

Cucumber (Cucumis sativus L. var. sativus; 2n = 2x = 14), has a narrow genetic base (3% to 8% polymorphism). Nevertheless, several genetic maps exist for this species. It is important to know the degree of colinearity among these maps. Thus, the positions of random amplified polymorphic DNAs, sequenced characterized amplified regions, simple sequence repeat, restriction fragment length polymorphisms, and fluorescent amplified fragment length polymorphism markers were compared in four maps. A previously unreported map was constructed in a narrow cross (processing line 2A × Gy8; C. s. var. sativus; ≈7% polymorphism) and compared with the three published maps [two narrow-based (processing type; C. s. var. sativus; 8% to 12% polymorphism) and a broad-based (C. s. var. sativus × C. s. var. hardwickii (R.) Alef. ≈12%)]. Common makers were identified in seven linkage groups, providing evidence for microsynteny. These common markers were used as anchor markers for map position comparisons of yield component quantitative trait loci. The relative order of anchor markers in each of six linkage groups (linkage groups 1, 2, and 4–7) that had two or more anchor markers within each group was colinear, and instances of microsynteny were detected. Commonalities in the position of some yield component quantitative trait loci exist in linkage groups 1 and 4 of the maps examined, and the general synteny among these maps indicates that identification and mapping of additional anchor markers would lead to successful map merging to increase cucumber map saturation for use in cucumber breeding.


Sign in / Sign up

Export Citation Format

Share Document