scholarly journals Development and Application of Genic Simple Sequence Repeat Markers from the Transcriptome of Loquat

2014 ◽  
Vol 139 (5) ◽  
pp. 507-517 ◽  
Author(s):  
Xiaoying Li ◽  
Hongxia Xu ◽  
Jianjun Feng ◽  
Junwei Chen

Deep transcriptome sequencing allows for the acquisition of large-scale microsatellite information, and it is especially useful for genetic diversity analysis and mapping in plants without reference genome sequences. In this study, a total of 14,004 simple sequence repeats (SSRs) were mined from 10,511 unigenes screening of 63,608 nonredundant transcriptome unigenes in loquat (Eriobotrya japonica) with a frequency of 22 SSR loci distributed over 100 unigenes. Dinucleotide and trinucleotide repeat SSRs were dominant, accounting for 20.62%, and 42.1% of the total, respectively. Seventy primer pairs were designed from partial SSRs and used for polymerase chain reaction (PCR) amplification. Of these primer pairs, 54 exhibited amplification and 33 were polymorphic. The number of alleles at these loci ranged from two to 17, and the polymorphism information content values ranged from 0.24 to 0.89. We tested the transferability of 33 SSR polymorphic primer pairs in apple and pear, and the transferability rates in these two species were 90.9% and 87.9%, respectively. A high level of marker polymorphism was observed in apple [Malus ×domestica (66.7%)], whereas a low level was observed in pear [Pyrus sp. (51.5%)]. In addition, the PCR products from seven SSR primer pairs were selected for sequence analysis, and 89.2% of the fragments were found to contain SSRs. SSR motifs were conserved among loquat, apple, and pear. According to our sequencing results for real SSR loci, ≈12,490 SSR loci were present in these loquat unigenes. The cluster dendrogram showed a distinct separation into different groups for these three species, indicating that these SSR markers were useful in the evaluation of genetic relationships and diversity between and within the species of Maloideae in the Rosaceae. The results of our identified SSRs should be useful for genetic linkage map construction, quantitative trait locus mapping, and molecular marker-assisted breeding of loquat and related species.

2016 ◽  
Vol 85 (3) ◽  
Author(s):  
Ming-Bao Luan ◽  
Ze-Mao Yang ◽  
Juan-Juan Zhu ◽  
Xin Deng ◽  
Chen-Chen Liu ◽  
...  

To provide a theoretical and practical foundation for ramie genetic analysis, simple sequence repeats (SSRs) were identified in the ramie genome and employed in this study. From the 115 369 sequences of a specific-locus amplified fragment library, a type of reduced representation library obtained by high-throughput sequencing, we identified 4774 sequences containing 5064 SSR motifs. SSRs of ramie included repeat motifs with lengths of 1 to 6 nucleotides, and the abundance of each motif type varied greatly. We found that mononucleotide, dinucleotide, and trinucleotide repeat motifs were the most prevalent (95.91%). A total of 98 distinct motif types were detected in the genomic-SSRs of ramie. Of them, The A/T mononucleotide motif was the most abundant, accounting for 41.45% of motifs, followed by AT/TA, accounting for 20.30%. The number of alleles per locus in 31 polymorphic microsatellite loci ranged from 2 to 7, and observed and expected heterozygosities ranged from 0.04 to 1.00 and 0.04 to 0.83, respectively. Furthermore, molecular identity cards (IDs) of the germplasms were constructed employing the ID Analysis 3.0 software. In the current study, the 26 germplasms of ramie can be distinguished by a combination of five SSR primers including Ibg5-5, Ibg3-210, Ibg1-11, Ibg6-468, and Ibg6-481. The allele polymorphisms produced by all SSR primers were used to analyze genetic relationships among the germplasms. The similarity coefficients ranged from 0.41 to 0.88. We found that these 26 germplasms were clustered into five categories using UPGMA, with poor correlation between germplasm and geographical distribution. Our study is the first large-scale SSR identification from ramie genomic sequences. We have further studied the SSR distribution pattern in the ramie genome, and proposed that it is possible to develop SSR loci from genomic data for population genetics studies, linkage mapping, quantitative trait locus mapping, cultivar fingerprinting, and as genetic diversity studies.


Genetics ◽  
1992 ◽  
Vol 132 (4) ◽  
pp. 1131-1139 ◽  
Author(s):  
M S Akkaya ◽  
A A Bhagwat ◽  
P B Cregan

Abstract The objective of this work was to ascertain the presence and degree of simple sequence repeat (SSR) DNA length polymorphism in the soybean [Glycine max (L.) Merr.]. A search of GenBank revealed no (CA)n or (GT)n SSRs with n greater than 8 in soybean. In contrast, 5 (AT)n and 1 (ATT)n SSRs with n ranging from 14 to 27 were detected. Polymerase chain reaction (PCR) primers to regions flanking the six SSR loci were used in PCR amplification of DNA from 43 homozygous soybean genotypes. At three loci, amplification produced one PCR product per genotype and revealed 6, 7 and 8 product length variants (alleles) at the three loci, respectively. F1 hybrids between parents carrying different alleles produced two PCR products identical to the two parents. Codominant segregation of alleles among F2 progeny was demonstrated at each locus. A soybean DNA library was screened for the presence of (CA/GT)n SSRs. Sequencing of positive clones revealed that the longest such SSR was (CA)9. Thus, (CA)n SSRs with n of 15 or more are apparently much less common in soybean than in the human genome. In contrast to humans, (CA)n SSRs will probably not provide an abundant source of genetic markers in soybean. However, the apparent abundance of long (AT)n sequences should allow this SSR to serve as a source of highly polymorphic genetic markers in soybean.


2016 ◽  
Vol 141 (5) ◽  
pp. 475-484 ◽  
Author(s):  
Narinder P.S. Dhillon ◽  
Supannika Sanguansil ◽  
Roland Schafleitner ◽  
Yen-Wei Wang ◽  
James D. McCreight

We report here the genetic characterization of bitter gourd (Momordica charantia) based on polymorphisms of 50 simple sequence repeat (SSR) loci in 114 accessions that included landraces, breeding lines, and commercial open-pollinated and F1 hybrid cultivars widely grown in Asia. Neighbor-joining tree analysis revealed a high level of genetic variability in the collection. The 114 accessions formed three subpopulations represented by five clusters. Distribution of accessions across the five clusters reflected their geographic origin to a large extent. South Asian accessions originating from India, Bangladesh, and Pakistan were more closely related to each other than to any other geographical group. Likewise, southeast Asian accessions that originated from Cambodia, Vietnam, Indonesia, and Philippines were grouped together. Accessions that originated from Taiwan were genetically distinct and grouped separately. A landrace from Laos was genetically close to the accessions from Thailand and genetically distinct from the rest of the accessions. White-fruited genotypes were genetically distinct from green- and dark green–fruited genotypes. Low- and medium-bitter accessions were more similar to each other than to the high-bitter genotypes. Accessions with cylindrical fruit were genetically distinct from those with spindle or elongated fruit. Commercial cultivars in each cluster were closely related, which indicated a narrowing of the bitter gourd genetic base in Asia in response to market demands for uniformity and yield. Use of diverse germplasm resources in bitter gourd breeding will help in sustainable breeding and production.


Author(s):  
Júlia Halász ◽  
Noémi Makovics-Zsohár ◽  
Ferenc Szőke ◽  
Sezai Ercisli ◽  
Attila Hegedűs

AbstractPolyploid Prunus spinosa (2n = 4 ×) and P. domestica subsp. insititia (2n = 6 ×) represent enormous genetic potential in Central Europe, which can be exploited in breeding programs. In Hungary, 16 cultivar candidates and a recognized cultivar ‘Zempléni’ were selected from wild-growing populations including ten P. spinosa, four P. domestica subsp. insititia and three P. spinosa × P. domestica hybrids (2n = 5 ×) were also created. Genotyping in eleven simple sequence repeat (SSR) loci and the multiallelic S-locus was used to characterize genetic variability and achieve a reliable identification of tested accessions. Nine SSR loci proved to be polymorphic and eight of those were highly informative (PIC values ˃ 0.7). A total of 129 SSR alleles were identified, which means 14.3 average allele number per locus and all accessions but two clones could be discriminated based on unique SSR fingerprints. A total of 23 S-RNase alleles were identified and the complete and partial S-genotype was determined for 10 and 7 accessions, respectively. The DNA sequence was determined for a total of 17 fragments representing 11 S-RNase alleles. ‘Zempléni’ was confirmed to be self-compatible carrying at least one non-functional S-RNase allele (SJ). Our results indicate that the S-allele pools of wild-growing P. spinosa and P. domestica subsp. insititia are overlapping in Hungary. Phylogenetic and principal component analyses confirmed the high level of diversity and genetic differentiation present within the analysed accessions and indicated putative ancestor–descendant relationships. Our data confirm that S-locus genotyping is suitable for diversity studies in polyploid Prunus species but non-related accessions sharing common S-alleles may distort phylogenetic inferences.


2001 ◽  
Vol 126 (3) ◽  
pp. 309-317 ◽  
Author(s):  
O. Gulsen ◽  
M.L. Roose

Inter-simple sequence repeats (ISSR), simple sequence repeats (SSR) and isozymes were used to measure genetic diversity and phylogenetic relationships among 95 Citrus L. accessions including 57 lemons [C. limon (L.) Burm. f.], related taxa, and three proposed ancestral species, C. maxima (Burm.) Merrill (pummelo), C. medica L. (citron), and C. reticulata Blanco (mandarin). The ancestry of lemons and several other suspected hybrids was also studied. Five isozyme and five SSR loci revealed relatively little variation among most lemons, but a high level of variation among the relatively distant Citrus taxa. Eight ISSR primers amplified a total of 103 polymorphic fragments among the 83 accessions. Similarity matrices were calculated and phylogenetic trees derived using unweighted pair-group method, arithmetic average cluster analysis. All lemons, rough lemons, and sweet lemons, as well as some other suspected hybrids, clustered with citrons. Most lemons (68%) had nearly identical marker phenotypes, suggesting they originated from a single clonal parent via a series of mutations. Citrons contributed the largest part of the lemon genome and a major part of the genomes of rough lemons, sweet lemons, and sweet limes. Bands that characterize C. reticulata and C. maxima were detected in lemons, suggesting that these taxa also contributed to the pedigree of lemon.


2018 ◽  
Vol 16 (4) ◽  
pp. 306-314
Author(s):  
Chan Liu ◽  
Qing Tang ◽  
Chaohua Cheng ◽  
Ying Xu ◽  
Zemao Yang ◽  
...  

AbstractChinese jiaotou is an economically important crop that is widely cultivated in East Asia. The lack of simple sequence repeat (SSR) markers has been a major obstacle for genetic studies of this crop. In the present study, SSR markers were developed for Chinese jiaotou on a large scale, based on the crop's transcriptome assembledde novoby a previous study. A search for SSR loci in the transcriptome's expressed sequence tags (ESTs) revealed 2157 SSRs, of which primer pairs could be developed for 1494. Among these resulting SSRs, trinucleotide repeat motifs were the most abundant type, with GAA/TTC motifs occurring most frequently. Analysing the annotated function of SSR-containing ESTs revealed that they enriched into the GO categories involved in transcription regulation, oxidation–reduction, transport, etc. The quality and transferability of these markers were also assessed using 100 randomly selected EST–SSRs, and the result showed that these markers were of good quality and possessed high cross-species transferability. In addition, the developed SSR markers were used to analyse the genetic diversity of 19 cultivated and four wild accessions, resulting in three distinct groups, cluster I, II and III. Interestingly, all four wild accessions were assigned to cluster III, and two local varieties from northern Hunan, China, were closely related to the wild genotypes. These results provide new insights into the origin of Chinese jiaotou. The EST–SSRs developed herein represent the first large-scale development of SSR markers in Chinese jiaotou, and they can be widely used for genetic studies of the crop.


Author(s):  
Ioana Virginia Berindean ◽  
Elena Tămaş ◽  
Oana Maria Toderic ◽  
Ioan Zagrai

Sweet cherry (Prunus avium L.), originated around the Caspian and Black Sea, is an important fruit tree species of economic interest, and hence, breeding and conservation are requested (. Genetic analysis at the molecular level can be used effectively to study molecular polymorphism existing between intraspecific and interspecific tree species and phylogenetic relationships between them and their hybrids. The purpose of this study was to characterize and determine genetic relationships among the sweet cherry native genotypes belonging to Fruit Research & Development Station Bistrita, Romania, using RAPD markers. To eliminate the existence of possible synonyms from national romanian collection, we collect four Van cultivars, from four different national collection. For molecular analysis of the 16 varieties of sweet cherry were considered 13 RAPD primers selected from the literature. They were later used to determine the genetic variability at the molecular level using PAST program, and the dendrogram was generated based on Jaccard’s genetic distance. The dendrogram constructed by PAST software. The quantity and quality of the DNA obtained was suitable to achieve PCR amplification step. Only seven out of the 13 RAPD primers have generate polymorphic bands. The rest of seven were monomorphics. The most polymorphic primer was OPB10 which generated 11 bands from which 100% were polymorphic.Seven RAPD primers generated a high level of polymorphism which allowed to divide these cherry varieties into two groups according to their genetic geographical origin and the pedigree.


2004 ◽  
Vol 1 (2) ◽  
pp. 73-78 ◽  
Author(s):  
Shang Hai-Ying ◽  
Zheng You-Liang ◽  
Wei Yu-Ming ◽  
Wu Wei ◽  
Yan Ze-Hong

AbstractGenetic diversity and relationships among 21 accessions of Secale L., including three species and 10 subspecies, were evaluated using RAMP markers. Forty-one out of 80 (50.5%) RAMP primers, which produced clear and polymorphic bands, were selected for PCR amplification of genomic DNA. A total of 446 bands were amplified from the 41 primers, and 428 of these bands (about 96%) were polymorphic. Three to 19 polymorphic bands could be amplified from each primer, with an average of 10.4 bands. The RAMP-based genetic similarity (GS) values among the 21 Secale accessions ranged from 0.266 to 0.658, with a mean of 0.449. A high level of genetic variation was found between or within the wild populations and the cultivars. Based on the GS matrix, a dendrogram was constructed using the unweighted pair group method with arithmetic average (UPGMA). All 21 accessions could be distinguished by RAMP markers. Clustering results showed that the genetic diversity of Secale based on RAMP markers was correlated with geographical distribution. Six rye cultivars, originating from Poland, Portugal, Mexico, Hungary, Armenia and Ukraine, were clustered into one group. The six countries are all located in the transitional region of broad-leaf forests between maritime and continental temperate zones, with narrow latitude span. In comparison, the other five cultivars from countries scattered over a region with large latitude span were distributed within different groups or subgroups. Genetic relationships based on RAMP markers had great deviation from the original taxonomy. Some subspecies of the same species were distributed within different groups, while some accessions of different species were closely clustered into one subgroup. These results suggest that RAMP markers could be an effective technique for detecting genetic diversity among Secale and give some useful information about its phylogenic relationships.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Bo Feng ◽  
Yang Fang ◽  
Zhibin Xu ◽  
Chao Xiang ◽  
Chunhong Zhou ◽  
...  

Lemnaceae (commonly called duckweed) is an aquatic plant ideal for quantitative analysis in plant sciences. Several species of this family represent the smallest and fastest growing flowering plants. Different ecotypes of the same species vary in their biochemical and physiological properties. Thus, selecting of desirable ecotypes of a species is very important. Here, we developed a simple and rapid molecular identification system forSpirodela polyrhizaandLandoltia punctatabased on the sequence polymorphism. First, several pairs of primers were designed and three markers were selected as good for identification. After PCR amplification, DNA fragments (the combination of three PCR products) in different duckweeds were detected using capillary electrophoresis. The high-resolution capillary electrophoresis displayed high identity to the sequencing results. The combination of the PCR products containing several DNA fragments highly improved the identification frequency. These results indicate that this method is not only good for interspecies identification but also ideal for intraspecies distinguishing. Meanwhile, 11 haplotypes were found in both theS. polyrhizaandL. punctataecotypes. The results suggest that this marker system is useful for large-scale identification of duckweed and for the screening of desirable ecotypes to improve the diverse usage in duckweed utilization.


2021 ◽  
Vol 3 (4) ◽  
pp. 77-96
Author(s):  
O. Yu. Antonova ◽  
N. S. Klimenko ◽  
D. A. Rybakov ◽  
N. A. Fomina ◽  
V. V. Zheltova ◽  
...  

The N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) is developing new approaches to documentation of national cultivars, taking into account recommendations of the International Code of Nomenclature for Cultivated Plants in parallel with methods of genetic certification. The nomenclatural standard of a particular cultivar represented by a herbarium specimen can be used as a reference for verifying authenticity and uniformity of cultivar specimens obtained from various sources. The verification requires fast and reliable methods for cultivar genotyping. This paper presents protocols for modified methods of DNA extraction, PCR-analysis and SSR-genotyping, which allow potato cultivars identification without the use of expensive reagent kits. A set of ten chromosome-specific microsatellite markers was used to study polymorphisms in 66 modern Russian potato cultivars, as well as in 11 pre-cultivars and breeding clones, represented by nomenclatural standards and voucher specimens, respectively. This subset of 77 specimens has demonstrated a high level of polymorphism in ten studied microsatellite loci. The SSR analysis identified 73 alleles; 7.3 alleles per locus were observed on average, the number of which varied from 3 (STG0025 locus) to 11 (locus StI046). The PIC values varied from 0.544 (STG0025 locus) to 0.836 (StI046 locus). The alleles, unique for this subset, were found at six studied loci. The high level of polymorphism at the SSR loci made it possible to unambiguously identify almost every cultivar, with the exception of the expected coincidence of microsatellite profiles of two cultivars, which are somaclonal variants. Using an optimized set of eight microsatellite markers, the genetic relationships of modern Russian potato cultivars were studied.


Sign in / Sign up

Export Citation Format

Share Document