scholarly journals Current state of the data transmission problem in heterogeneous communication systems

Author(s):  
I.Y. Polyakov ◽  
◽  
A.N. Klimenko ◽  
D.D. Zykov ◽  
P.V. Chebotayev ◽  
...  
2021 ◽  
Vol 12 (4) ◽  
pp. 35-42
Author(s):  
Thomas Alan Woolman ◽  
Philip Lee

There are significant challenges and opportunities facing the economies of the United States in the coming decades of the 21st century that are being driven by elements of technological unemployment. Deep learning systems, an advanced form of machine learning that is often referred to as artificial intelligence, is presently reshaping many aspects of traditional digital communication technology employment, primarily network system administration and network security system design and maintenance. This paper provides an overview of the current state-of-the-art developments associated with deep learning and artificial intelligence and the ongoing revolutions that this technology is having not only on the field of digital communication systems but also related technology fields. This paper will also explore issues and concerns related to past technological unemployment challenges, as well as opportunities that may be present as a result of these ongoing technological upheavals.


1988 ◽  
Vol 25 (A) ◽  
pp. 237-256
Author(s):  
J. Keilson ◽  
M. Zachmann

The matrix-geometric results of M. Neuts are extended to ergodic row-continuous bivariate Markov processes [J(t), N(t)] on state space B = {(j, n)} for which: (a) there is a boundary level N for N(t) associated with finite buffer capacity; (b) transition rates to adjacent rows and columns are independent of row level n in the interior of B. Such processes are of interest in the modelling of queue-length for voice-data transmission in communication systems. One finds that the ergodic distribution consists of two decaying components of matrix-geometric form, the second induced by the finite buffer capacity. The results are obtained via Green's function methods and compensation. Passage-time distributions for the two boundary problems are also made available algorithmically.


Expansion of internet connectivity and its usage globally has increased various demands of providing security for the data transmission. Telemedicine is a modern way of medical care that can be extended to any remote place across the globe. This medical care practice is a result of the deployment of communication systems and information technology into healthcare system. With this technology the diagnosed data can be shared with physician and take his consultation remarks and also physicians can access to diagnostic archive and share for medical practice and learning. However, this exchange of information is confined with several risks of data theft when they are shared in open networks and hence they are to be protected with high security algorithms. This paper provides a high capacitive security algorithm for protecting the images with hidden confidential information. The approach provides a two-way security by encrypting the clinical information initially and embedding it imperceptibly in the concerned image so that the user on other can obtain both the visual and text data at same instance


2017 ◽  
Vol 14 (3) ◽  
pp. 301-312 ◽  
Author(s):  
Valentin Fedosov ◽  
Andrey Legin ◽  
Anna Lomakina

Trends in the modern world increasingly lead to the growing popularity of wireless technologies. This is possible due to the rapid development of mobile communications, the Internet gaining high popularity, using wireless networks at enterprises, offices, buildings, etc. It requires advanced network technologies with high throughput capacity to meet the needs of users. To date, a popular destination is the development of spatial signal processing techniques allowing to increase spatial bandwidth of communication channels. The most popular method is spatial coding MIMO to increase data transmission speed which is carried out due to several spatial streams emitted by several antennas. Another advantage of this technology is the bandwidth increase to be achieved without expanding the specified frequency range. Spatial coding methods are even more attractive due to a limited frequency resource. Currently, there is an increasing use of wireless communications (for example, WiFi and WiMAX) in information transmission networks. One of the main problems of evolving wireless systems is the need to increase bandwidth and improve the quality of service (reducing the error probability). Bandwidth can be increased by expanding the bandwidth or increasing the radiated power. Nevertheless, the application of these methods has some drawbacks, due to the requirements of biological protection and electromagnetic compatibility, the increase of power and the expansion of the frequency band is limited. This problem is especially relevant in mobile (cellular) communication systems and wireless networks operating in difficult signal propagation conditions. One of the most effective ways to solve this problem is to use adaptive antenna arrays with weakly correlated antenna elements. Communication systems using such antennas are called MIMO systems (Multiple Input Multiple Output multiple input - multiple outputs). At the moment, existing MIMO-idea implementations do not always noticeably accelerate traffic at short distances from the access point, but, they are very effective at long distances. The MIMO principle allows reducing the number of errors in radio data interchange (BER) without reducing the transmission rate under conditions of multiple signal re-reflections. The work aims at developing an adaptive space-time signal algorithm for a wireless data transmission system designed to improve the efficiency of this system, as well as to study the efficiency of the algorithm to minimizing the error bit probability and maximizing the channel capacity.


Author(s):  
Anatoliy Soltus ◽  
◽  
Maksym Rud ◽  

The article examines the problems of navigation and communication with the use of satellite technologies in road transport in the context of the growth of globalization processes in the world economy and the transformations of freight transport technologies caused by a large-scale transition to transport with zero emissions and the development of unmanned vehicles. The paper discusses the principles of building a global high-speed broadband satellite Internet with low latency. Potential capabilities of technologies such as digital antenna arrays and laser communication channels used in such systems are analyzed. Also considered are the existing and potential problems, both technical with electromagnetic compatibility with existing satellite communication systems and between systems under construction or planning, and legal caused by changes in the principles of information transfer at the interstate level. The main players in the emerging market of high-speed satellite communications are considered and the parameters of the systems declared by them are described. The comparison of the current state of building satellite constellations of individual projects is carried out and the ability to implement the announced plans by individual companies is analyzed. The disadvantages that create obstacles for the introduction of high-speed satellite communications in road transport at the moment and the directions of their overcoming are highlighted. Considering the potential of satellite Internet systems, the current state of construction, as well as existing technical and legal restrictions, the introduction of reliable satellite communications will significantly speed up the transition to autonomous unmanned vehicles. In this regard, the most successful opportunities for the new communication technology will be able to realize the transport companies, which will simultaneously update the fleet of vehicles towards zero emissions and with unmanned technologies.


Author(s):  
Mike Sabelkin ◽  
François Gagnon

The proposed communication system architecture is called TOMAS, which stands for data Transmission oriented on the Object, communication Media, Application, and state of communication Systems. TOMAS could be considered a Cross-Layer Interface (CLI) proposal, since it refers to multiple layers of the Open Systems Interconnection Basic Reference Model (OSI). Given particular scenarios of image transmission over a wireless LOS channel, the wireless TOMAS system demonstrates superior performance compared to a JPEG2000+OFDM system in restored image quality parameters over a wide range of wireless channel parameters. A wireless TOMAS system provides progressive lossless image transmission under influence of moderate fading without any kind of channel coding and estimation. The TOMAS system employs a patent pending fast analysis/synthesis algorithm, which does not use any multiplications, and it uses three times less real additions than the one of JPEG2000+OFDM.


Sign in / Sign up

Export Citation Format

Share Document