scholarly journals RESEARCH OF CHANGE IN FRACTION COMPOSITION OF VEHICLE GASOLINE IN THE MODIFICATION OF ITS BIODETHANOL IN THE CAVITATION FIELD

2020 ◽  
Vol 5 ◽  
pp. 12-20 ◽  
Author(s):  
Aleksey Tselishchev ◽  
Marina Loriya ◽  
Sergey Boychenko ◽  
Sergey Kudryavtsev ◽  
Vasil Laneckij

The influence of bioethanol content and parameters of the cavitation field on the quality indicators of motor gasolines: volatility and octane number is studied. Studying the effect of bioethanol and cavitation treatment of bioethanol-gasoline mixture will make it possible to produce automotive fuels for different climatic zones, or winter (summer) versions of gasolines. The use of bioethanol and cavitation treatment of a bioethanol-gasoline mixture affect the fractional composition of motor gasoline and its volatility. The optimal content of the biocomponent, at which there is an increase in the volatility of gasoline, is established Also the results of the octane number change are presented depending on the intensity of cavitation treatment for gas condensate with the addition of bioethanol. The influence of bioethanol content on the increase in octane number during cavitation treatment is determined. It is found that the introduction of bioethanol into the composition of gasoline leads to an improvement in its volatility. In this case, cavitation treatment makes it possible to obtain a mixture resistant to delamination. The addition of bioethanol leads to an adequate increase in light fractions during mechanical mixing and to a change in the fractional composition of the bioethanol-gasoline mixture during cavitation treatment. The addition of bioethanol in amounts up to 10% leads to a decrease in the saturated vapor pressure during cavitation treatment of bioethanol-gasoline mixtures, and an increase in the bioethanol content up to 20% leads to an increase in the saturated vapor pressure, which is explained by a change in the chemical composition of fuel components in comparison with the mechanical method of preparing mixtures. By cavitation treatment it is possible to change the fractional composition, the pressure of saturated vapors and the volatility of bioethanol-gasoline mixtures, making cavitation a promising energy-saving process for the production of gasoline for various climatic conditions

2020 ◽  
pp. 56-65
Author(s):  
S.V. Boichenko ◽  
◽  
A.V. Yakovlieva ◽  
O.B. Tselishchev ◽  
V.G. Lanetsky ◽  
...  

Today, the use of bioethanol as an alternative motor fuel is quite relevant. Bioethanol is generally used as an additive to traditional petroleum fuels. The addition of bioethanol has a positive effect on increasing the evaporation and detonation resistance of gasoline. However, the addition of bioethanol alone may not be sufficient to fully address these issues. This article presents the results of a study of the influence of bioethanol content and cavitation field parameters on the quality of gasoline: evaporation and octane number. To determine the effect of cavitation treatment of gasoline-ethanol mixture on the physical stability of the fuel and evaporation, the content of narrow fractions, the percentage of fractions in the fuel, and the saturated vapor pressure before and after cavitation were determined. The optimal content of the biocomponent, which increases the evaporation of gasoline, has been established. The results of the change of octane number depending on the intensity of cavitation treatment for gas condensate with the addition of bioethanol are also presented. The influence of bioethanol content on the increase of octane number during cavitation treatment was determined. It is shown that the production of blended fuels by compounding with the use of cavitation treatment allows to obtain a gasoline-reference mixture with significantly better evaporation characteristics, in particular in terms of fractional composition and saturated vapor pressure, compared to gasoline-ethanol mixtures obtained by conventional mechanical compounding. In addition, it was found that the use of cavitation treatment can increase the octane number of fuels. The introduc-tion of ethanol can further increase their octane number. Thus, the introduction of ethanol and the use of cavitation treatment has a synergistic effect on improving the anti-knock characteristics of gasoline.


2018 ◽  
Vol 240 ◽  
pp. 03004
Author(s):  
Min-rui Chen ◽  
Jin-yuan Qian ◽  
Zan Wu ◽  
Chen Yang ◽  
Zhi-jiang Jin ◽  
...  

When liquids flowing through a throttling element, such as a perforated plate, the velocity increases and the pressure decreases. If the pressure is below the saturated vapor pressure, the liquid will vaporize into small bubbles, which is called hydraulic cavitation. In fact, vaporization nucleus is another crucial condition for vaporizing. The nanoparticles contained in the nanofluids play a significant role in vaporization of liquids. In this paper, the effects of the nanoparticles on hydraulic cavitation are investigated. Firstly, a geometric model of a pipe channel equipped with a perforated plate is established. Then with different nanoparticle volume fractions and diameters, the nanofluids flowing through the channel is numerically simulated based on a validated numerical method. The operation conditions, such as the temperature and the pressure ratio of inlet to outlet, are the considered variables. As a significant parameter, cavitation numbers under different operation conditions are achieved to investigate the effects of nanoparticles on hydraulic cavitation. Meanwhile, the contours are extracted to research the distribution of bubbles for further investigation. This study is of interests for researchers working on hydraulic cavitation or nanofluids.


2005 ◽  
Vol 284-286 ◽  
pp. 353-356 ◽  
Author(s):  
Koji Ioku ◽  
Giichiro Kawachi ◽  
Nakamichi Yamasaki ◽  
Hirotaka Fujimori ◽  
Seishi Goto

Porous plates of hydroxyapatite (Ca10(PO4)6(OH)2; HA) with about 0.5 to 5 mm in thickness and porous HA granules of about 40 µm to 1 mm in size with tailored crystal surface were prepared by the hydrothermal vapor exposure method at the temperatures above 105 °C under saturated vapor pressure of pure water. Porous HA plates with about 75 % porosity prepared at 120 °C were composed of rod-shaped crystals of about 20 µm in length. Porous HA granules prepared at 160 °C were also composed of rod-shaped crystals of about 20 µm in length with the mean aspect ratio of 30. These crystals were elongated along the c-axis. Rod-shaped HA crystals were locked together to make micro-pores of about 0.1 to 0.5 µm in size. Both of materials were nonstoichiometric HA with calcium deficient composition. These materials must have the advantage of adsorptive activity, because they had large specific crystal surface and much micro-pores.


Daxue Huaxue ◽  
2021 ◽  
Vol 0 (0) ◽  
pp. 2107062-0
Author(s):  
Shuai Zhang ◽  
Jian Zhang ◽  
Shaowei Bian ◽  
Yaping Zhao ◽  
Li Shen ◽  
...  

Author(s):  
О.И. НИКОНОВ ◽  
Н.Н. БЕЛИНА ◽  
А.В. ГУКАСЯН

Приведены характеристики содержащихся в масле одорирующих веществ. Проведен анализ конструкции существующих дезодораторов. Рассчитаны параметры, влияющие на процесс дезодорации в тонком слое. Получена зависимость давления насыщенных паров от температуры дезодорации. На основе проведенных расчетов предложены способы интенсификации процесса дезодорации. Предложена усовершенствованная конструкция дезодоратора, позволяющая интенсифицировать процесс дезодорации: сократить время и уменьшить расход острого пара. The characteristics of the odorizing substances contained in the oil are given. An analysis of the design of already existing deodorizers is given. The parameters affecting the deodorization process in a thin layer are calculated. The dependence of the saturated vapor pressure on the deodorization temperature was obtained. On the basis of the calculations performed, methods for intensifying the deodorization process have been proposed. The proposed improved design of the deodorizer, which allows intensify the deodorization process: to reduce the time and reduce the consumption of live steam.


Sign in / Sign up

Export Citation Format

Share Document