scholarly journals Tributyltin induces Yca1p-dependent cell death of yeast Saccharomyces cerevisiae

2009 ◽  
Vol 34 (5) ◽  
pp. 541-545 ◽  
Author(s):  
Thippayarat Chahomchuen ◽  
Koichi Akiyama ◽  
Takayuki Sekito ◽  
Naoko Sugimoto ◽  
Masaaki Okabe ◽  
...  
2017 ◽  
Vol 200 (1) ◽  
pp. 33-46 ◽  
Author(s):  
Maria M. Bayliak ◽  
Olha V. Hrynkiv ◽  
Roksolana V. Knyhynytska ◽  
Volodymyr I. Lushchak

2011 ◽  
Vol 39 (5) ◽  
pp. 1520-1526 ◽  
Author(s):  
Ralf J. Braun ◽  
Benedikt Westermann

Mitochondria play crucial roles in programmed cell death and aging. Different stimuli activate distinct mitochondrion-dependent cell death pathways, and aging is associated with a progressive increase in mitochondrial damage, culminating in oxidative stress and cellular dysfunction. Mitochondria are highly dynamic organelles that constantly fuse and divide, forming either interconnected mitochondrial networks or separated fragmented mitochondria. These processes are believed to provide a mitochondrial quality control system and enable an effective adaptation of the mitochondrial compartment to the metabolic needs of the cell. The baker's yeast, Saccharomyces cerevisiae, is an established model for programmed cell death and aging research. The present review summarizes how mitochondrial morphology is altered on induction of cell death or on aging and how this correlates with the induction of different cell death pathways in yeast. We highlight the roles of the components of the mitochondrial fusion and fission machinery that affect and regulate cell death and aging.


2005 ◽  
Vol 33 (6) ◽  
pp. 1447-1450 ◽  
Author(s):  
M.A. Macris ◽  
P. Sung

Homologous recombination (HR) is a major pathway for the elimination of DNA DSBs (double-strand breaks) induced by high-energy radiation and chemicals, or that arise due to endogenous damage and stalled DNA replication forks. If not processed properly, DSBs can lead to cell death, chromosome aberrations and tumorigenesis. Even though HR is important for genome maintenance, it can also interfere with other DNA repair mechanisms and cause gross chromosome rearrangements. In addition, HR can generate DNA or nucleoprotein intermediates that elicit prolonged cell-cycle arrest and sometimes cell death. Genetic analyses in the yeast Saccharomyces cerevisiae have revealed a central role of the Srs2 helicase in preventing untimely HR events and in inhibiting the formation of potentially deleterious DNA structures or nucleoprotein complexes upon DNA replication stress. Paradoxically, efficient repair of DNA DSBs by HR is dependent on Srs2. In this paper, we review recent molecular studies aimed at deciphering the multifaceted role of Srs2 in HR and other cellular processes. These studies have provided critical insights into how HR is regulated in order to preserve genomic integrity and promote cell survival.


2021 ◽  
Author(s):  
Victoria Bidiuk ◽  
Alexander Alexandrov ◽  
Airat Valiakhmetov

Abstract Extracellular pH has a significant impact on the physiology of the yeast cell, but its role in cell death has not been thoroughly investigated. We studied the effect of extracellular pH on the development of primary necrosis in Saccharomyces cerevisiae yeast under two general conditions leading to cell death. The first is sugar induced cell death (SICD), and the second is death caused by several specific gene deletions, which have been recently identified in a systematic screen. It was shown that in both cases, primary necrosis is suppressed at neutral pH. SICD was also inhibited by the protonophore dinitrophenol (DNP) and 150 mM extracellular K+, with the latter condition also benefiting survival of cell dying due to gene mutations. Thus, we show that neutral pH can suppress different types of primary necrosis. We suggest that changes to the cellular membrane potential can play a central role in yeast cell death.


2018 ◽  
Vol 9 ◽  
Author(s):  
Cédric Grangeteau ◽  
Florine Lepinois ◽  
Pascale Winckler ◽  
Jean-Marie Perrier-Cornet ◽  
Sebastien Dupont ◽  
...  

2021 ◽  
Author(s):  
Goldie Libby Sherr ◽  
Chang-Hui Shen

Exposure of the yeast Saccharomyces cerevisiae to environmental stress can influence cell growth, physiology and differentiation, and thus result in a cell’s adaptive response. During the course of an adaptive response, the yeast vacuoles play an important role in protecting cells from stress. Vacuoles are dynamic organelles that are similar to lysosomes in mammalian cells. The defect of a lysosome’s function may cause various genetic and neurodegenerative diseases. The multi-subunit V-ATPase is the main regulator for vacuolar function and its activity plays a significant role in maintaining pH homeostasis. The V-ATPase is an ATP-driven proton pump which is required for vacuolar acidification. It has also been demonstrated that phospholipid biosynthetic genes might influence vacuolar morphology and function. However, the mechanistic link between phospholipid biosynthetic genes and vacuolar function has not been established. Recent studies have demonstrated that there is a regulatory role of Pah1p, a phospholipid biosynthetic gene, in V-ATPase disassembly and activity. Therefore, in this chapter we will use Saccharomyces cerevisiae as a model to discuss how Pah1p affects V-ATPase disassembly and activity and how Pah1p negatively affect vacuolar function. Furthermore, we propose a hypothesis to describe how Pah1p influences vacuolar function and programmed cell death through the regulation of V-ATPase.


2011 ◽  
Vol 25 (S1) ◽  
Author(s):  
Kevin Murphy ◽  
John Sullivan ◽  
Christian Selinski ◽  
Brendan Swan ◽  
Nicanor Austriaco

2014 ◽  
Vol 71 (3) ◽  
pp. 1525-1536 ◽  
Author(s):  
Magdalena Kwolek-Mirek ◽  
Renata Zadrąg-Tęcza ◽  
Sabina Bednarska ◽  
Grzegorz Bartosz

Abstract The yeast Saccharomyces cerevisiae is a useful eukaryotic model to study the toxicity of acrolein, an important environmental toxin and endogenous product of lipid peroxidation. The study was aimed at elucidation of the cytotoxic effect of acrolein on the yeast deficient in SOD1, Cu, Zn-superoxide dismutase which is hypersensitive to aldehydes. Acrolein generated within the cell from its precursor allyl alcohol caused growth arrest and cell death of the yeast cells. The growth inhibition involved an increase in production of reactive oxygen species and high level of protein carbonylation. DNA condensation and fragmentation, exposition of phosphatidylserine at the cell surface as well as decreased dynamic of actin microfilaments and mitochondria disintegration point to the induction of apoptotic-type cell death besides necrotic cell death.


Sign in / Sign up

Export Citation Format

Share Document