Problems with Porometry: Measuring Net Photosynthesis by Leaf Chamber Techniques

1989 ◽  
Vol 81 (3) ◽  
pp. 475-479 ◽  
Author(s):  
S. B. Idso ◽  
S. G. Allen ◽  
B. A. Kimball ◽  
B. J. Choudhury
HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 465c-465
Author(s):  
Dharmalingam S. Pitchay ◽  
Marlene Cross ◽  
Bradford C. Bearce ◽  
Edwin Townsend

On 26 Mar. 1997, New Guinea impatiens (Impatiens × New Guinea) cultivars `Aglia', `Anaea', `Bora-bora', and `Dark Delias', were planted in 1 peat: 1 vermiculite (v/v) rooting media containing 0%, 25%, or 50% by volume of coal bottom ash (CBA) that had been sieved through 6-mm mesh. Individual flower longevity was recorded from the first day of flower opening until senescence. There was no significant effect among levels of CBA on flower longevity. However, flower life varied significantly among cultivars from 9.5–9.9 days in `Aglia' to 15.1–15.8 days in `Dark Delias'. Per-plant bloom numbers increased linearly with increase in percent CBA for all cultivars. Plant diameters were reduced by CBA in `Aglia', but not affected by CBA in the other three cultivars. Plant heights of `Dark Delias' were increased at 50% CBA over that of plants in 0% CBA. Visual quality indices were significantly greater for plants in CBA media compared to that for plants in 0% CBA. Top fresh and dry weights within each cultivar were equal among CBA levels. Within cultivars, there were no significant differences among plants at different CBA levels in plant transpiration rate, stomatal conductance, and net photosynthesis when measured with an LCA3 Leaf Chamber Analyser. However, there were significant differences in these processes among cultivars.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 354
Author(s):  
El-Sayed M. Desoky ◽  
Elsayed Mansour ◽  
Mohamed M. A. Ali ◽  
Mohamed A. T. Yasin ◽  
Mohamed I. E. Abdul-Hamid ◽  
...  

The influence of 24-epibrassinolide (EBR24), applied to leaves at a concentration of 5 μM, on plant physio-biochemistry and its reflection on crop water productivity (CWP) and other agronomic traits of six maize hybrids was field-evaluated under semi-arid conditions. Two levels of irrigation water deficiency (IWD) (moderate and severe droughts; 6000 and 3000 m3 water ha−1, respectively) were applied versus a control (well-watering; 9000 m3 water ha−1). IWD reduced the relative water content, membrane stability index, photosynthetic efficiency, stomatal conductance, and rates of transpiration and net photosynthesis. Conversely, antioxidant enzyme activities and osmolyte contents were significantly increased as a result of the increased malondialdehyde content and electrolyte leakage compared to the control. These negative influences of IWD led to a reduction in CWP and grain yield-related traits. However, EBR24 detoxified the IWD stress effects and enhanced all the above-mentioned parameters. The evaluated hybrids varied in drought tolerance; Giza-168 was the best under moderate drought, while Fine-276 was the best under severe drought. Under IWD, certain physiological traits exhibited a highly positive association with yield and yield-contributing traits or CWP. Thus, exogenously using EBR24 for these hybrids could be an effective approach to improve plant and water productivity under reduced available water in semi-arid environments.


2021 ◽  
Vol 13 (13) ◽  
pp. 7355
Author(s):  
Shivendra Kumar ◽  
Ramdeo Seepaul ◽  
Ian M. Small ◽  
Sheeja George ◽  
George Kelly O’Brien ◽  
...  

Brassica carinata (carinata) has emerged as a potential biofuel source due to its high erucic acid content, making it desirable for various industrial applications. Nitrogen (N) and sulfur (S) are required as primary sources of nutrition for growth and development in different oilseed crops and their utilization is interdependent. The purpose of the study was to analyze the interactive effect of N and S nutrition on the growth and other physiological activities of carinata and B. napus (napus). Four treatments, i.e., optimum NS (+N+S, 100% N and 100% S); N limited (−N+S, 0% N, 100% S); S limited (+N−S, 100% N, 0% S), and NS limited (−N−S, 0% N and 0% S) of N and S in full-strength Hoagland solution were imposed in the current study. Effect of different NS treatments was observed on vegetative traits such as number of primary and secondary branches, total leaf area, total biomass production and allocation, and physiological traits such as production of photosynthetic pigments, net photosynthesis, electron transport, and other aspects for both carinata and napus. The traits of stem elongation, number of nodes, node addition rate, internode length, number of primary and secondary branches were 60%, 36%, 50%, 35%, 56%, and 83% lower, respectively, in napus in comparison to carinata. Different NS treatments also positively influenced the production of photosynthetic pigments such as chlorophyll (Chl) a and b and carotenoids in carinata and napus. The concentration of Chla was 11% higher in napus in comparison to carinata. The rate of net photosynthesis, electron transport, and fluorescence was 12%, 8%, and 5% higher based on overall value, respectively, in napus compared to carinata. On the other hand, the overall value for stomatal conductance decreased by 5% in napus when compared to carinata. Different growth-related traits such as vegetative (plant height, node number, internode length, leaf area, number of primary and secondary branches), reproductive (pod number, pod length, seeds per pod), and photosynthetic capacity in oilseed brassicas are correlated with the final seed and oil yield and chemical composition which are of economic importance for the adoption of the crop. Thus, the analysis of these traits will help to determine the effect of NS interaction on crop productivity of carinata and napus.


1994 ◽  
Vol 24 (5) ◽  
pp. 954-959 ◽  
Author(s):  
L.J. Samuelson ◽  
J.R. Seiler

The interactive influences of ambient (374 μL•L−1) or elevated (713 μL•L−1) CO2, low or high soil fertility, well-watered or water-stressed treatment, and rooting volume on gas exchange and growth were examined in red spruce (Picearubens Sarg.) grown from seed through two growing seasons. Leaf gas exchange throughout two growing seasons and growth after two growing seasons in response to elevated CO2 were independent of soil fertility and water-stress treatments, and rooting volume. During the first growing season, no reduction in leaf photosynthesis of seedlings grown in elevated CO2 compared with seedlings grown in ambient CO2 was observed when measured at the same CO2 concentration. During the second growing season, net photosynthesis was up to 21% lower for elevated CO2-grown seedlings than for ambient CO2-grown seedlings when measured at 358 μL•L−1. Thus, photosynthetic acclimation to growth in elevated CO2 occurred gradually and was not a function of root-sink strength or soil-fertility treatment. However, net photosynthesis of seedlings grown and measured at an elevated CO2 concentration was still over 2 times greater than the photosynthesis of seedlings grown and measured at an ambient CO2 concentration. Growth enhancement by CO2 was maintained, since seedlings grown in elevated CO2 were 40% larger in both size and weight after two growing seasons.


Sign in / Sign up

Export Citation Format

Share Document