New Guinea Impatiens Flower Life and Growth Response to Coal Bottom Ash Level in the Root Substrate

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 465c-465
Author(s):  
Dharmalingam S. Pitchay ◽  
Marlene Cross ◽  
Bradford C. Bearce ◽  
Edwin Townsend

On 26 Mar. 1997, New Guinea impatiens (Impatiens × New Guinea) cultivars `Aglia', `Anaea', `Bora-bora', and `Dark Delias', were planted in 1 peat: 1 vermiculite (v/v) rooting media containing 0%, 25%, or 50% by volume of coal bottom ash (CBA) that had been sieved through 6-mm mesh. Individual flower longevity was recorded from the first day of flower opening until senescence. There was no significant effect among levels of CBA on flower longevity. However, flower life varied significantly among cultivars from 9.5–9.9 days in `Aglia' to 15.1–15.8 days in `Dark Delias'. Per-plant bloom numbers increased linearly with increase in percent CBA for all cultivars. Plant diameters were reduced by CBA in `Aglia', but not affected by CBA in the other three cultivars. Plant heights of `Dark Delias' were increased at 50% CBA over that of plants in 0% CBA. Visual quality indices were significantly greater for plants in CBA media compared to that for plants in 0% CBA. Top fresh and dry weights within each cultivar were equal among CBA levels. Within cultivars, there were no significant differences among plants at different CBA levels in plant transpiration rate, stomatal conductance, and net photosynthesis when measured with an LCA3 Leaf Chamber Analyser. However, there were significant differences in these processes among cultivars.

HortScience ◽  
2005 ◽  
Vol 40 (7) ◽  
pp. 2040-2046 ◽  
Author(s):  
Jonathan M. Frantz ◽  
James C. Locke ◽  
Dharmalingam S. Pitchay ◽  
Charles R. Krause

An appropriate blend of growing media components increases water holding capacity and reduces irrigation frequency. Synthetic commercial materials, referred to as hydrogels, have remarkable hydrating properties, but can add significantly (about 15%) to the cost of growing media. The literature generally states that the physical characteristics of hydrogels, such as polyacrylamide (PAM), are altered by the presence of divalent cations (Ca2+ and Mg2+). Few studies, however, have simultaneously investigated plant growth and development and media characteristics on a daily basis throughout plant production. Thus, the mechanisms explaining the reported beneficial and/or detrimental effects from PAM incorporation remain hidden. In this study, canopy ground cover of two species [pansy (Viola ×wittrockiana Gams) and new guinea impatiens (Impatiens hawkeri Bull)] was measured daily, from transplanting to marketable size, using digital imaging to determine growth differences of plants grown in media containing different amounts of PAM. Media water content was determined with time-domain reflectance probes every 10 minutes in media treatments. Total number of irrigation events, time between irrigation events, root development after 4 and 8 weeks of growth, flower number, flower longevity, and dry masses of the shoot were also measured. Scanning electron microscopy revealed significant structural differences in hydrated PAM depending on water quality. The pansy canopy coverage was significantly greater with hydrogels, and root growth early in production was enhanced with PAM. No such effect was observed for new guinea impatiens. Total flower numbers and flower longevity of new guinea impatiens decreased with increasing amount of PAM (16.7% or higher) in the media. PAM incorporation reduced the need for irrigation early in production for both species, but by the end of production, those new guinea impatiens plants were smaller (less shoot dry mass) and required irrigation as often as plants grown without PAM. This effect coincided with reduced media volume, air capacity, and total porosity in PAM-containing media. Theoretical analysis of the potential benefits from hydrogels confirms the potential benefit early in production with little to no benefit later in production and in post-production. These data will assist growers in determining if the benefits derived from the use of PAM justify the added cost of medium.


HortScience ◽  
1992 ◽  
Vol 27 (11) ◽  
pp. 1162g-1162
Author(s):  
Laura K. Judd ◽  
Douglas A. Cox

To test the effect of soluble salts on the growth of New Guinea impatiens (Impatiens platypetala), `Selenia' was grown for 70 days in a soilless medium and irrigated with solutions of 20N-4.3P-16.6K at rates of 0.5, 1.0, 1.5, or 2.0 g·liter-1. A fifth treatment was no fertilization for the first 14 days, 0.5 g·liter-1 for the next 14 days and 1.0 g·liter-1 till finish. At 14-day intervals shoot dry weight and growth medium soluble salts were measured. By 42 days after planting, differences between treatments were statistically significant with respect to dry weight. Over a 70-day period, growth was greatest with 0.5 g·liter-1. The 1.0 g·liter-1 treatment caused a similar growth response. Plants in delay treatment responded similarly to 0.5 and 1.0 g·liter-1. Higher rates, 1.5 and 2.0 g·liter-1, caused growth suppression and resulted in soluble salts buildup in the growth medium. Soluble salts levels of 1.5 dS·m-1 and above suppressed early growth. Results show that during the first 42-56 days of growth, New Guinea impatiens are sensitive to soluble salts and levels over 1.5 dS·m-1 are cause for concern.


HortScience ◽  
1990 ◽  
Vol 25 (10) ◽  
pp. 1270-1271 ◽  
Author(s):  
Caroline H. Pearson-Mims ◽  
Virginia I. Lohr

Cut `Samantha' roses (Rosa hybrida L.) were placed in deionized water or a 20-mm Ca(NO3)2 pulsing solution for 72 hours. Flowers then were held in preservative solutions containing 0 or 4 mg fluoride/liter. Fresh weight gain, solution uptake, degree of flower opening, and flower longevity were reduced in the presence of fluoride in the holding solution. Visual symptoms of injury and reduced flower quality also were noted in treatments with fluoride. Pulsing improved fresh weight gain and degree of opening of flowers held in solutions containing fluoride. Pulsing also delayed the onset of visual symptoms of fluoride injury. Water uptake for flowers that were pulsed and exposed to fluoride was not different from uptake for flowers exposed to fluoride alone. Flower longevity for roses in all treatments was increased by using the calcium nitrate pulse, but pulsed flowers in fluoride did not survive as long as the control flowers.


J ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 223-232
Author(s):  
Esperanza Menéndez ◽  
Cristina Argiz ◽  
Miguel Ángel Sanjuán

Ground coal bottom ash is considered a novel material when used in common cement production as a blended cement. This new application must be evaluated by means of the study of its pozzolanic properties. Coal bottom ash, in some countries, is being used as a replacement for natural sand, but in some others, it is disposed of in a landfill, leading thus to environmental problems. The pozzolanic properties of ground coal bottom ash and coal fly ash cements were investigated in order to assess their pozzolanic performance. Proportions of coal fly ash and ground coal bottom ash in the mixes were 100:0, 90:10, 80:20, 50:50, 0:100. Next, multicomponent cements were formulated using 10%, 25% or 35% of ashes. In general, the pozzolanic performance of the ground coal bottom ash is quite similar to that of the coal fly ash. As expected, the pozzolanic reaction of both of them proceeds slowly at early ages, but the reaction rate increases over time. Ground coal bottom ash is a promising novel material with pozzolanic properties which are comparable to that of coal fly ashes. Then, coal bottom ash subjected to an adequate mechanical grinding is suitable to be used to produce common coal-ash cements.


2021 ◽  
Vol 13 (14) ◽  
pp. 8031
Author(s):  
Syakirah Afiza Mohammed ◽  
Suhana Koting ◽  
Herda Yati Binti Katman ◽  
Ali Mohammed Babalghaith ◽  
Muhamad Fazly Abdul Patah ◽  
...  

One effective method to minimize the increasing cost in the construction industry is by using coal bottom ash waste as a substitute material. The high volume of coal bottom ash waste generated each year and the improper disposal methods have raised a grave pollution concern because of the harmful impact of the waste on the environment and human health. Recycling coal bottom ash is an effective way to reduce the problems associated with its disposal. This paper reviews the current physical and chemical and utilization of coal bottom ash as a substitute material in the construction industry. The main objective of this review is to highlight the potential of recycling bottom ash in the field of civil construction. This review encourages and promotes effective recycling of coal bottom ash and identifies the vast range of coal bottom ash applications in the construction industry.


2007 ◽  
Vol 37 (2) ◽  
pp. 231-241 ◽  
Author(s):  
L.B. Andrade ◽  
J.C. Rocha ◽  
M. Cheriaf

Sign in / Sign up

Export Citation Format

Share Document