Penetration of Soybean Roots by Soybean Cyst Nematode at High Soil Water Potentlals

1993 ◽  
Vol 85 (2) ◽  
pp. 416-419 ◽  
Author(s):  
A. B. Johnson ◽  
H. D. Scott ◽  
R. D. Riggs
2007 ◽  
Vol 20 (5) ◽  
pp. 510-525 ◽  
Author(s):  
Nagabhushana Ithal ◽  
Justin Recknor ◽  
Dan Nettleton ◽  
Tom Maier ◽  
Thomas J. Baum ◽  
...  

Cyst nematodes of the genus Heterodera are obligate, sedentary endoparasites that have developed highly evolved relationships with specific host plant species. Successful parasitism involves significant physiological and morphological changes to plant root cells for the formation of specialized feeding cells called syncytia. To better understand the molecular mechanisms that lead to the development of nematode feeding cells, transcript profiling was conducted on developing syncytia induced by the soybean cyst nematode Heterodera glycines in soybean roots by coupling laser capture microdissection with high-density oligonucleotide microarray analysis. This approach has identified pathways that may play intrinsic roles in syncytium induction, formation, and function. Our data suggest interplay among phytohormones that likely regulates synchronized changes in the expression of genes encoding cell-wall-modifying proteins. This process appears to be tightly controlled and coordinately regulated with cell wall rigidification processes that may involve lignification of feeding cell walls. Our data also show local downregulation of jasmonic acid biosynthesis and responses in developing syncytia, which suggest a local suppression of plant defense mechanisms. Moreover, we identified genes encoding putative transcription factors and components of signal transduction pathways that may be important in the regulatory processes governing syncytium formation and function. Our analysis provides a broad mechanistic picture that forms the basis for future hypothesis-driven research to understand cyst nematode parasitism and to develop effective management tools against these pathogens.


2020 ◽  
Vol 110 (3) ◽  
pp. 603-614 ◽  
Author(s):  
Noah Strom ◽  
Weiming Hu ◽  
Deepak Haarith ◽  
Senyu Chen ◽  
Kathryn Bushley

Although fungal endophytes are commonly investigated for their ability to deter microbial plant pathogens, few studies have examined the activity of fungal root endophytes against nematodes. The soybean cyst nematode (SCN; Heterodera glycines), the most severe yield-limiting pathogen of soybean (Glycine max), is commonly managed through rotation of soybean with corn (Zea mays), a nonhost of the SCN. A total of 626 fungal endophytes were isolated from surface-sterilized corn and soybean roots from experimental plots in which soybean and corn had been grown under annual rotation and under 1, 3, 5, and 35 years of continuous monoculture. Fungal isolates were grouped into 401 morphotypes, which were clustered into 108 operational taxonomic units (OTUs) based on 99% sequence similarity of the full internal transcribed spacer region. Morphotype representatives within each OTU were grown in malt extract broth and in a secondary metabolite-inducing medium buffered with ammonium tartrate, and their culture filtrates were tested for nematicidal activity against SCN juveniles. A majority of OTUs containing isolates with nematicidal culture filtrates were in the order Hypocreales, with the genus Fusarium being the most commonly isolated nematicidal genus from corn and soybean roots. Less commonly isolated taxa from soybean roots included the nematophagous fungi Hirsutella rhossiliensis, Metacordyceps chlamydosporia, and Arthrobotrys iridis. Root endophytic fungal diversity in soybean was positively correlated with SCN density, suggesting that the SCN plays a role in shaping the soybean root endophytic community.


Planta ◽  
2006 ◽  
Vol 224 (4) ◽  
pp. 838-852 ◽  
Author(s):  
Nadim W. Alkharouf ◽  
Vincent P. Klink ◽  
Imed B. Chouikha ◽  
Hunter S. Beard ◽  
Margaret H. MacDonald ◽  
...  

2006 ◽  
Vol 96 (12) ◽  
pp. 1409-1415 ◽  
Author(s):  
X. Gao ◽  
T. A. Jackson ◽  
G. L. Hartman ◽  
T. L. Niblack

The soybean cyst nematode, Heterodera glycines, and the fungus that causes sudden death syndrome (SDS) of soybean, Fusarium solani f. sp. glycines, frequently co-infest soybean (Glycine max) fields. The interactions between H. glycines and F. solani f. sp. glycines were investigated in factorial greenhouse experiments with different inoculum levels of both organisms on a soybean cultivar susceptible to both pathogens. Measured responses included root and shoot dry weights, H. glycines reproduction, area under the SDS disease progress curve, and fungal colonization of roots. Both H. glycines and F. solani f. sp. glycines reduced the growth of soybeans. Reproduction of H. glycines was suppressed by high inoculum levels but not by low levels of F. solani f. sp. glycines. The infection of soybean roots by H. glycines did not affect root colonization by the fungus, as determined by real-time polymerase chain reaction. Although both pathogens reduced the growth of soybeans, H. glycines did not increase SDS foliar symptoms, and statistical interactions between the two pathogens were seldom significant.


Nematology ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Yanfeng Hu ◽  
Jia You ◽  
Chunjie Li ◽  
Fengjuan Pan ◽  
Congli Wang

Summary The aim of this study was to examine the impact of water extracts of Narcissus tazetta bulb on hatching, behaviour and mortality of second-stage juveniles (J2) and reproduction of the soybean cyst nematode (SCN; Heterodera glycines) in laboratory and glasshouse assays. Results demonstrated that N. tazetta bulb extracts did not affect hatching but significantly reduced J2 motility and nematode attraction to the soybean root tip, and resulted in considerable nematode mortality relative to the control. J2 exposure to different concentrations of bulb extracts caused 59-93% reduction in nematode reproduction on soybean roots. Compared with the monoculture control, soybean-N. tazetta intercropping in a pot trial reduced SCN reproduction by 37%. In addition, N. tazetta bulb powder as a soil amendment is effective in controlling SCN reproduction. Thus, the results suggest that N. tazetta bulb extract or derived active compounds may be considered as potential natural nematicides against SCN.


Sign in / Sign up

Export Citation Format

Share Document