scholarly journals Water Use Efficiency in Living Mulch and Annual Cover Crop Corn Production Systems

2018 ◽  
Vol 110 (3) ◽  
pp. 1128-1135 ◽  
Author(s):  
Zachary P. Sanders ◽  
Joshua S. Andrews ◽  
Nicholas S. Hill
HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 981C-981 ◽  
Author(s):  
Lincoln Zotarelli ◽  
Johannes Scholberg ◽  
Michael Dukes ◽  
Hannah Snyder ◽  
Rafael Munoz-Carpena ◽  
...  

Several practices have been adopted to minimize water use and potential N leaching of vegetable production systems, including use of drip irrigation, plastic mulch, and fertigation. However, these practices may not be adequate on sandy soils with poor water and nutrient retention capacities. The objectives of this study were to evaluate the interactive effects of irrigation practices and fertilizer rates on yield, fertilizer requirements, and N-leaching of pepper and tomato production systems. Bell pepper and tomato were planted on plastic mulched to evaluate the effects of three nitrogen (N) fertilizer rates (154, 192, 288 kg·ha -1 N for pepper vs. 166, 208, and 312 kg·ha-1 N for tomato) and three irrigation scheduling methods were evaluated. Depending on sensor readings, soil moisture sensor (SMS) irrigation treatments allowed up to five watering events per day where as for the fixed duration treatment irrigation was applied once a day. For tomato, the effect of subsurface drip irrigation (SDI) was also evaluated. Compared to TIME, use of SMS control system reduced water use by 29& to 44% and 37% to 66% for tomato and pepper, respectively. Tomato yield was significantly higher on SMS and SDI treatments compared to TIME treatments. For pepper yield and biomass accumulation were not affected by irrigation treatments. The average yields were 24.6 and 27.8 Mg·ha-1 of fresh marketable fruits for pepper and tomato, respectively. Nitrogen rate did not affect yield and optimal yield N rate did not affect yield for either crop. On average, SMS treatments increased irrigation water use efficiency 2–3 times compared to TIME treatments for both tomato and pepper.


2015 ◽  
Vol 66 (5) ◽  
pp. 419 ◽  
Author(s):  
Tina Botwright Acuña ◽  
Shaun Lisson ◽  
Peter Johnson ◽  
Geoff Dean

Yield, water use and water-use efficiency (WUE) in the high-rainfall zone of Tasmania are highly variable because of environmental and agronomic constraints to grain production that limit yield potential. The expansion of irrigation infrastructure in Tasmanian production systems with access to low-cost, plentiful irrigation sources will also influence these components in some areas. This paper reports on desktop modelling studies that aimed to benchmark wheat WUE and to explore the sensitivity of yield, water use and WUE to changes in management practice in a high-rainfall environment. Here, WUE was defined as: grain yield/(evapotranspiration + drainage + runoff). The crop simulation model APSIM-Wheat was used to quantify key water balance elements and estimate ‘attainable’ and ‘potential’ WUE and grain yield for 27 wheat trials. The upper limit for WUE was ~30 kg/ha.mm in excess of 180 mm evaporation, which is 16% higher than previous estimates at this southerly latitude for wheat. Attainable WUE ranged from 58% to 100% of potential WUE and was limited by nitrogen supply and water loss through evaporation, drainage and runoff. Model scenarios showed that co-limitation of inputs of nitrogen and irrigation was an important driver of grain yield and WUE. The implications of this research on crop management and production in temperate, high-rainfall environments are discussed.


2022 ◽  
Vol 32 (1) ◽  
pp. 21-27
Author(s):  
Osama Mohawesh ◽  
Ammar Albalasmeh ◽  
Sanjit Deb ◽  
Sukhbir Singh ◽  
Catherine Simpson ◽  
...  

Colored shading nets have been increasingly studied in semi-arid crop production systems, primarily because of their ability to reduce solar radiation with the attendant reductions in air, plant, and soil temperatures. However, there is a paucity of research concerning the impact of colored shading nets on various crops grown under semi-arid environments, particularly the sweet pepper (Capsicum annum) production system. This study aimed to investigate the effects of three colored shading net treatments (i.e., white, green, and black shading nets with 50% shading intensity and control with unshaded conditions) on the growth and instantaneous water use efficiency (WUE) of sweet pepper. The results showed that all colored shading nets exhibited significantly lower daytime air temperatures and light intensity (22 to 28 °C and 9992 lx, respectively) compared with the control (32 to 37 °C and 24,973 lx, respectively). There were significant differences in sweet pepper growth performance among treatments, including plant height, shoot dry weight, leaf area, leaf chlorophyll content, and vitamin C in ripened fruit. The enhanced photosynthetic rates were observed in sweet pepper plants under the colored shading nets compared with control plants. WUE increased among the colored shading net treatments in the following order: control ≤ white < black < green. Overall, the application of green and black shading nets to sweet pepper production systems under semi-arid environments significantly enhanced plant growth responses and WUE.


Revista CERES ◽  
2013 ◽  
Vol 60 (4) ◽  
pp. 563-568 ◽  
Author(s):  
Edvaldo Eloy Dantas Júnior ◽  
Lucia Helena Garófala Chaves ◽  
Fernando Antônio Melo da Costa ◽  
Hans Raj Gheyi

Calcium-magnesium silicates improve the soil physicochemical properties and provide benefits to plant nutrition, since they are sources of silica, calcium and magnesium. The objective of this study was to evaluate the grain yield of irrigated corn fertilized with calcium-magnesium silicate. The experiment was carried out in a greenhouse in Campina Grande - PB, Brazil, using plastic pots containing 80 kg of soil. The treatments consisted of the combination of four irrigation depths, related to water replacement of 50, 75, 100 and 125% of the crop evapotranspiration, with fertilizer levels of 0, 82, 164 and 246 g of calcium-magnesium silicate, with three replications. The experimental design was in randomized blocks, with the irrigation depths distributed in bands while the silicon levels constituted the subplots. Corn yield was influenced by calcium-magnesium silicate and by irrigation depth, obtaining the greatest grain yield with the dose of 164 g pot-1 irrigated at the highest water level. The water-use efficiency of in corn production tended to decrease when the irrigation depth was increased. The best water-use efficiency was observed when the irrigation level was between 87 and 174 mm, and the dose of silicate was 164 g pot-1.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 193
Author(s):  
Virupax C. Baligar ◽  
Marshall K. Elson ◽  
Zhenli He ◽  
Yuncong Li ◽  
Arlicelio de Q. Paiva ◽  
...  

At early stages of establishment of tropical plantation crops, inclusion of legume cover crops could reduce soil degradation due to erosion and nutrient leaching. As understory plants these cover crops receive limited irradiance and can be subjected to elevated CO2 at ground level. A glasshouse experiment was undertaken to assess the effects of ambient (450 µmol mol−1) and elevated (700 µmol mol−1) levels of [CO2] on growth, physiological changes and nutrient uptake of six perennial legume cover crops (Perennial Peanut, Ea-Ea, Mucuna, Pigeon pea, Lab lab, Cowpea) under low levels of photosynthetic photon flux density (PPFD; 100, 200, and 400 µmol m−2 s−1). Overall, total and root dry biomass, total root length, specific leaf area, and relative growth rates were significantly influenced by levels of [CO2] and PPFD and cover crop species. With few exceptions, all the cover crops showed significant effects of [CO2], PPFD, and species on net photosynthesis (PN) and its components, such as stomatal conductance (gs) internal CO2 conc. (Ci), and transpiration (E). Increasing [CO2], from 450 to 700 μmol mol−1 and increasing PPFD from 100 to 400 μmol ּm−2 ּs−1 increased PN. Overall, the levels of [CO2], PPFD and species significantly affected total water use efficiency (WUETOTAL), instantaneous water use efficiency (WUEINST) and intrinsic water use efficiency (WUEINTR). With some exceptions, increasing levels of [CO2] and PPFD increased all the WUE parameters. Interspecific differences were observed with respect to macro-micro nutrient uptake and use efficiency. With a few exceptions, increasing levels of [CO2] from 450 to 700 μmol mol−1 and PPFD from 100 to 400 μmol m−2 s−1 increased nutrient use efficiency (NUE) of all nutrients by cover crop species.


2021 ◽  
Vol 256 ◽  
pp. 107085
Author(s):  
Jun Wang ◽  
Shaohong Zhang ◽  
Upendra M. Sainju ◽  
Rajan Ghimire ◽  
Fazhu Zhao

2021 ◽  
Vol 255 ◽  
pp. 107042
Author(s):  
Yizhuo Li ◽  
Di Tian ◽  
Gary Feng ◽  
Wei Yang ◽  
Liping Feng

Sign in / Sign up

Export Citation Format

Share Document