Effects of Different Soil Tillage Systems on Soil Carbon Management Index Under Double-Cropping Rice Field in Southern China

2019 ◽  
Vol 111 (1) ◽  
pp. 440-447 ◽  
Author(s):  
Haiming Tang ◽  
Xiaoping Xiao ◽  
Chao Li ◽  
Wenguang Tang ◽  
Kaikai Cheng ◽  
...  
2019 ◽  
Vol 45 (5) ◽  
pp. 740
Author(s):  
Hai-Ming TANG ◽  
Xiao-Ping XIAO ◽  
Chao LI ◽  
Wen-Guang TANG ◽  
Li-Jun GUO ◽  
...  

2020 ◽  
Vol 158 (1-2) ◽  
pp. 119-127
Author(s):  
Haiming Tang ◽  
Xiaoping Xiao ◽  
Chao Li ◽  
Xiaochen Pan ◽  
Kaikai Cheng ◽  
...  

AbstractChanges in soil bulk density (BD), soil organic carbon (SOC) content, SOC stocks and soil labile organic C fractions (mineralizable C (Cmin), microbial biomass C (MBC), dissolved organic C (DOC), particulate organic C (POC), light fraction organic C (LFOC) and permanganate oxidizable C (KMnO4-C)) were explored over 3 years in a double-cropping rice system of southern China. Five organic and inorganic nitrogen (N) inputs were used: (1) 100% from chemical fertilizer (M0), (2) 30% from organic manure, 70% from chemical fertilizer (M30), (3) 50% from organic manure, 50% from chemical fertilizer (M50), (4) 100% from organic manure (M100) and (5) without N fertilizer input, as control (CK). All organic manure treatments decreased BD significantly in the 0–20 cm soil layer compared with CK. The SOC content and stocks with organic manure were significantly higher than in M0 or CK; also, the cumulative amount of SOC stocks in M30 and M50 increased at the plough layer, compared with CK. The non-labile C content increased significantly and the percentage of labile C were significantly higher with organic manure application than in M0 or CK. The soil carbon management index (CMI) also increased significantly under the application of organic manure. Therefore, application of organic manure can increase the pool of stable C in surface layers, and increase content and percentage of labile C. Based on soil carbon storage and CMI, the combined application of 30 or 50% N of organic manure with chemical fertilizer improves carbon cycling services and soil quality in southern China paddy soil.


2011 ◽  
Vol 71-78 ◽  
pp. 2759-2762
Author(s):  
Juan Peng ◽  
En Ci ◽  
Zhuo Wang Fu ◽  
Ming Gao ◽  
De Ti Xie

Effects of different tillage systems on organic carbon and carbon management index (CMI) in paddy soil of long-term experiment site (since 1990) were studied. The experiment included three tillage treatments: conventional tillage with rotation of rice and winter fallow (CT-r) system, no-tillage and ridge culture with rotation of rice and rape (RT-rr) system, and conventional tillage with rotation of rice and rape (CT-rr) system. Soil labile organic carbon measured by oxidation of KMnO4 respond rapidly to carbon supply changes, and it is considered as an important indicator of soil quality. Compared with CT-r system, long-term RT-rr system significantly increased total organic carbon and labile organic carbon in surface soil (0-10 cm and10-20 cm). The proportion of labile organic carbon to total organic carbon under RT-rr system was higher than other tillage systems. The carbon management index (CMI) is derived from the total soil organic carbon pool and carbon lability and is useful to evaluate the capacity of management systems to promote soil quality. The CMI increased in each layer under RT-rr system, while it decreased under CT-rr system. This indicated that conservation tillage improved the capacity of the management system into promoting soil quality in Sichuan Basin of China.


1995 ◽  
Vol 46 (7) ◽  
pp. 1459 ◽  
Author(s):  
GJ Blair ◽  
RDB Lefroy ◽  
L Lisle

Increasing population pressure is increasing the demand on agricultural systems in many parts of the world and this has often led to the degradation of the soil resource. Soil carbon (C) is a major determinant of sustainability of agricultural systems and changes can occur in both total and active, or labile, C pools. A procedure is presented to determine the degree of lability of soil C. By treating a ground sample of soil with 333 mM potassium permanganate (KMnO4) to oxidize a proportion of the carbon and by determining the total carbon by combustion, two fractions of C can be measured. These fractions represent carbon of different lability, with fraction I representing the Labile C (CL), which is oxidized by 333 mM KMnO4, and fraction I1 representing the non-labile C (CNL), which is not oxidized by 333 mM KMnO4. On the basis of changes in total carbon (CT), a Carbon Pool Index (CPI) is calculated and, on the basis of changes in the proportion of labile C in the soil between a reference site and those subjected to agricultural practice or research treatments, a Lability Index (LI) is determined. These two indices are used to calculate a Carbon Management Index (CMI), with CMI = C Pool Index (CPI) xLability Index (LI) x 100. Analyses of paired samples (cropped and uncropped) from three sites in northern and central New South Wales, Australia, have shown a decline in CPI, a greater decline in LI and hence a decline in the CMI with cropping. Introduction of a legume into a wheat cropping system restored the CMI from 22 to 37 at the Warialda site. Analyses of paired samples from a sugarcane area in north Queensland have shown a decline in CMI in systems dominated by trash burning, but an increase in CMI in systems dominated by green cane trash management. Similar data from Brazil showed no increase in CT with mulching but a 48% increase in CMI due to an increase in the lability of C in the soil. The fractionation procedure and CMI outlined can be used to determine the state and rate of change in soil C of agricultural and natural systems.


Sign in / Sign up

Export Citation Format

Share Document