U.S. North-Central: Denitrification loss of fertilizer nitrogen during drought year under soil with high clay content

Crops & Soils ◽  
2013 ◽  
Vol 46 (4) ◽  
pp. 24-32
Author(s):  
Rakesh Awale ◽  
Amitava Chatterjee ◽  
Hans Kandel ◽  
Joel Ransom
SOIL ◽  
2018 ◽  
Vol 4 (1) ◽  
pp. 47-62 ◽  
Author(s):  
Brice Prudat ◽  
Lena Bloemertz ◽  
Nikolaus J. Kuhn

Abstract. Soil degradation is a major threat for farmers of semi-arid north-central Namibia. Soil conservation practices can be promoted by the development of soil quality (SQ) evaluation toolboxes that provide ways to evaluate soil degradation. However, such toolboxes must be adapted to local conditions to reach farmers. Based on qualitative (interviews and soil descriptions) and quantitative (laboratory analyses) data, we developed a set of SQ indicators relevant for our study area that integrates farmers' field experiences (FFEs) and technical knowledge. We suggest using participatory mapping to delineate soil units (Oshikwanyama soil units, KwSUs) based on FFEs, which highlight mostly soil properties that integrate long-term productivity and soil hydrological characteristics (i.e. internal SQ). The actual SQ evaluation of a location depends on the KwSU described and is thereafter assessed by field soil texture (i.e. chemical fertility potential) and by soil colour shade (i.e. SOC status). This three-level information aims to reveal SQ improvement potential by comparing, for any location, (a) estimated clay content against median clay content (specific to KwSU) and (b) soil organic status against calculated optimal values (depends on clay content). The combination of farmers' and technical assessment cumulates advantages of both systems of knowledge, namely the integrated long-term knowledge of the farmers and a short- and medium-term SQ status assessment. The toolbox is a suggestion for evaluating SQ and aims to help farmers, rural development planners and researchers from all fields of studies understanding SQ issues in north-central Namibia. This suggested SQ toolbox is adapted to a restricted area of north-central Namibia, but similar tools could be developed in most areas where small-scale agriculture prevails.


1996 ◽  
Vol 45 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Charles W. Rovey ◽  
William F. Kean

AbstractFive pre-Illinoian tills are recognized and named informally in northern Missouri, near the southernmost margin of the pre-Illinoian Laurentide ice sheet. The three youngest tills (McCredie formation) have high (50–60%) expandable clay mineral contents and normal remanent magnetic polarity. The next oldest till (Moberly formation) has low (30–40%) expandable clay content and reversed polarity. The oldest till (Atlanta formation) has very low or no expandable clay minerals. Its remanent magnetic polarity is unknown.The sequence of four pre-Illinoian tills above the Atlanta formation probably correlates with the similar sequence of four pre-Illinoian “A type” tills in western Iowa and eastern Nebraska. The upper four tills in Missouri are also correlated, in order of increasing age, with the three members of the Wolf Creek Formation and the older Alburnett Formation in eastern Iowa. The oldest till in Missouri possibly correlates with the “C type” till in western Iowa.Pre-Illinoian Laurentide ice reached the same approximate southern margin at least five times. Those advances deposited tills which maintain characteristic compositions over distances of at least 350 km along flow lines.


1975 ◽  
Vol 12 (8) ◽  
pp. 1346-1361 ◽  
Author(s):  
Roger M. Slatt

Surficial palimpsest sediments in Halls Bay, north-central Newfoundland, are mixtures of gravel, sand, and mud deposited from a number of sources in varying quantities from late Wisconsinan to the present time. Shallow water gravel originated as till and glacio-fluvial outwash. Gravel in deep water probably is ice-rafted. Sand and mud, which occurs with shallow water gravel and in deeper water, is a combination of fluvial material and material winnowed out of till and outwash by shallow water waves and currents during early marine transgression. There also may be a contribution of fine-grained sediment from the adjacent shelf.Gravel (coarser than [Formula: see text]), very fine sand (3 to [Formula: see text]) and coarse silt (4 to [Formula: see text]) modal grain-size classes predominate in the sediments. The very fine sand mode occurs on the west side of the inlet and the coarse silt mode occurs on the east side regardless of water depth, indicating net or active easterly dispersal of fine-grained sediment. This dispersal path may result from the presence in Halls Bay of a counterclockwise gyre of the Labrador Current that has developed since early transgression, which suggests the sediment surface is adjusting to the Halls Bay modern hydraulic regime.Sandy and muddy sediments are composed of quartz, feldspar, amphibole, illite, chlorite, montmorillonite, organic matter, CaCO3, and FeS. Major, minor, and trace element concentrations vary with grain-size, owing to the different proportions of these components in different size fractions. Calculation of an average chemical composition of sediments is biased because of this grain-size effect. The grain-size effect on chemistry of a suite of sediments can be accounted for by ratioing element concentrations to clay content.Plots of the ratio trace metal concentration/clay content vs. clay content for six trace metals indicate anomalous Cu concentrations occur in surface sediments along the east side of Halls Bay in the direction of fine-grained sediment dispersal. The anomalous Cu is derived from onshore mineralization in Lushs Bight Group volcanic rocks, which Occur along the west side of the inlet.The results provide an example of the applicability of marine sedimentologic/sedimentary geochemical investigations to mineral exploration. Local geochemical anomalies in sediments can be detected by routine analysis of total metal content of bulk samples provided the grain-size effect on chemistry is accounted for. The anomalous metal can be traced to its onshore source by evaluating sediment dispersal paths from textural variations.


1988 ◽  
Vol 62 (03) ◽  
pp. 411-419 ◽  
Author(s):  
Colin W. Stearn

Stromatoporoids are the principal framebuilding organisms in the patch reef that is part of the reservoir of the Normandville field. The reef is 10 m thick and 1.5 km2in area and demonstrates that stromatoporoids retained their ability to build reefal edifices into Famennian time despite the biotic crisis at the close of Frasnian time. The fauna is dominated by labechiids but includes three non-labechiid species. The most abundant species isStylostroma sinense(Dong) butLabechia palliseriStearn is also common. Both these species are highly variable and are described in terms of multiple phases that occur in a single skeleton. The other species described areClathrostromacf.C. jukkenseYavorsky,Gerronostromasp. (a columnar species), andStromatoporasp. The fauna belongs in Famennian/Strunian assemblage 2 as defined by Stearn et al. (1988).


Sign in / Sign up

Export Citation Format

Share Document