A New Method to Quantify the Impact of Soil Carbon Management on Biophysical Soil Properties: The Example of Two Apple Orchard Systems in New Zealand

2008 ◽  
Vol 37 (3) ◽  
pp. 915-924 ◽  
Author(s):  
Markus Deurer ◽  
Siva Sivakumaran ◽  
Stefanie Ralle ◽  
Iris Vogeler ◽  
Ian McIvor ◽  
...  
Author(s):  
Allison Neil

Soil properties are strongly influenced by the composition of the surrounding vegetation. We investigated soil properties of three ecosystems; a coniferous forest, a deciduous forest and an agricultural grassland, to determine the impact of land use change on soil properties. Disturbances such as deforestation followed by cultivation can severely alter soil properties, including losses of soil carbon. We collected nine 40 cm cores from three ecosystem types on the Roebuck Farm, north of Perth Village, Ontario, Canada. Dominant species in each ecosystem included hemlock and white pine in the coniferous forest; sugar maple, birch and beech in the deciduous forest; grasses, legumes and herbs in the grassland. Soil pH varied little between the three ecosystems and over depth. Soils under grassland vegetation had the highest bulk density, especially near the surface. The forest sites showed higher cation exchange capacity and soil moisture than the grassland; these differences largely resulted from higher organic matter levels in the surface forest soils. Vertical distribution of organic matter varied greatly amongst the three ecosystems. In the forest, more of the organic matter was located near the surface, while in the grassland organic matter concentrations varied little with depth. The results suggest that changes in land cover and land use alters litter inputs and nutrient cycling rates, modifying soil physical and chemical properties. Our results further suggest that conversion of forest into agricultural land in this area can lead to a decline in soil carbon storage.


2019 ◽  
Vol 8 (3) ◽  
pp. 87-98
Author(s):  
Alaa Abbas ◽  
Felicite Ruddock ◽  
Rafid Alkhaddar ◽  
Glynn Rothwell ◽  
Iacopo Carnacina ◽  
...  

The use of a finite element (FE) method and selection of the appropriate model to simulate soil elastoplastic behaviour has confirmed the importance and sensitivity of the soil properties on the accuracy when compared with experimental data. The properties of the filling soil play a significant role in determining levels of deformation and displacement of both the soil and subterranean structures when using the FE model simulation. This paper investigates the impact of the traffic load on the filling soil deformation when using the traditional method, one pipe in a trench, and a new method, two pipes in a single trench one over the other, for setting up a separate sewer system. The interaction between the buried pipes and the filling soils has been simulated using an elastoplastic FE model. A modified Drucker–Prager cap constitutive model was used to simulate the stress-strain behaviours of the soil. A series of laboratory tests were conducted to identify the elastoplastic properties of the composite soil used to bury the pipes. The FE models were calibrated using a physical lab model for testing the buried pipes under applied load. This allows the FE model to be confidently upgraded to a full-scale model. The pipe-soil interactions were found to be significantly influenced by the soil properties, the method of placing the pipes in the trench and the diameters of the buried pipes. The deformation of the surface soil was decreased by approximately 10% when using the new method of setting up the separate sewer.


Geomorphology ◽  
2018 ◽  
Vol 307 ◽  
pp. 93-106 ◽  
Author(s):  
Les Basher ◽  
Harley Betts ◽  
Ian Lynn ◽  
Mike Marden ◽  
Stephen McNeill ◽  
...  

Soil Research ◽  
2015 ◽  
Vol 53 (1) ◽  
pp. 13 ◽  
Author(s):  
Jessica T. Heath ◽  
Chris J. Chafer ◽  
Thomas F. A. Bishop ◽  
Floris F. Van Ogtrop

Soil properties can be considerably modified as a result of wildfire. This study examined the impact of wildfire on total carbon and water repellency at two study sites, namely Cranebrook and Wentworth Falls, located 45 and 75 km west of Sydney, Australia, respectively. Within each study site, we measured soil properties at two depth intervals from five burn severity classes along 15 transects (10 sample points per transect). Samples were taken 6, 12 and 36 months after wildfire. Soil total carbon was measured using LECO combustion analysis and potential soil water repellency was determined using water drop penetration time. Two-way analysis of variance (ANOVA) was used to analyse the results, with burn severity and time as factors. Burn severity had a significant effect on both soil total carbon and water repellency at both study sites, whereas time was only significant for soil carbon at Wentworth Falls. Soil total carbon and water repellency were variable through time due to local environmental variables, such as rainfall and temperature. The relationship between soil total carbon and water repellency was strong for Cranebrook in the surface soil (r = 0.62) and lower in the subsurface soil (r = 0.41), but weaker at Wentworth Falls, with values of r = 0.22 and r = 0.15 in the surface and subsurface soils respectively.


2010 ◽  
Vol 47 (6) ◽  
pp. 709-714 ◽  
Author(s):  
Inhea Kim ◽  
Markus Deurer ◽  
Siva Sivakumaran ◽  
Keun Young Huh ◽  
Steve Green ◽  
...  

2016 ◽  
Vol 31 (2) ◽  
pp. 205-212 ◽  
Author(s):  
Belle Jürgen ◽  
Kleemann Stephan ◽  
Odermatt Jürgen ◽  
Olbrich Andrea
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document