The impact of soil carbon management and environmental conditions on N mineralization

2010 ◽  
Vol 47 (6) ◽  
pp. 709-714 ◽  
Author(s):  
Inhea Kim ◽  
Markus Deurer ◽  
Siva Sivakumaran ◽  
Keun Young Huh ◽  
Steve Green ◽  
...  
2008 ◽  
Vol 37 (3) ◽  
pp. 915-924 ◽  
Author(s):  
Markus Deurer ◽  
Siva Sivakumaran ◽  
Stefanie Ralle ◽  
Iris Vogeler ◽  
Ian McIvor ◽  
...  

2020 ◽  
Author(s):  
Oka Ardiana Banaty ◽  
Koen Willekens ◽  
Stefaan De Neve

<p>Predictions of N mineralization are still difficult but maybe this is due to the methodologies. Many soil tests have been proposed to predict N mineralization between field and laboratory experiment. Incubations of soil in the laboratory under controlled environmental conditions are most commonly used to assess N mineralization rates both from SOM and from added organic materials. However, predicting N mineralization due to the methods (the impact of using air-dried and fresh soil) has never been assessed before. If the results differ between the methods commonly used, there is a serious problem. Therefore, the objective of this study was to evaluate the influence of the incubation methods (air-dried vs fresh soil) to predict N mineralization. The N mineralization potential from fifteen agricultural soils in West and East Flanders – Belgium, were determined by aerobic incubation methods used air-dried and fresh soil at (20 – 25<sup>0</sup>C) for 84-days in the laboratory. The results indicated that total mineral nitrogen (NH4<sup>+</sup> + NO3<sup>-</sup>) concentrations and carbon content of microbial biomass (MBC) did not differ significantly between these methods. Nitrogen was mineralized in fresh soil incubations (0.36 mg N. kg<sup>-1</sup> soil day <sup>-1</sup>) while in air-dried soil (0.31 mg N kg<sup>-1</sup> soil day <sup>-1</sup>). Thus, the results generate that it may be conceivable to predict N mineralization by these two methods in controlled conditions.</p>


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1901
Author(s):  
Ana Gonzalez-Martinez ◽  
Carmen De-Pablos-Heredero ◽  
Martin González ◽  
Jorge Rodriguez ◽  
Cecilio Barba ◽  
...  

The Guayas, located in Ecuador, is the largest basin in the Pacific Ocean and has an inventory of 123 native freshwater species. Most of these are endemic species that are threatened or at-risk due to anthropogenic activity and the modification, fragmentation, and destruction of habitats. The aim of this study was to determine the morphometric variation in three wild populations of Brycon dentex in the Guayas basin rivers and their connections to fishing management and environmental conditions. A total of 200 mature fish were captured, and 26 morphometric parameters were measured. The fishing policies (Hypothesis 1) and environmental conditions (Hypothesis 2) were considered fixed factors and were validated by t-tests. The morphological variation among the three populations (Hypothesis 3) was validated through a discriminant analysis. Fishing policies and resource management were found to generate morphological differences associated with body development. In addition, the environmental conditions were found to influence the size and structure of Brycon dentex populations. The analyzed populations were discriminated by the generated morphometric models, which differentiated Cluster 1 (Quevedo and Mocache rivers) with high fishing pressure from Cluster 2 (Pintado river) with medium–low fishing pressure. Morphometric differentiation by discriminant analysis is a direct and economic methodology that can be applied as an indicator of diversity maintenance.


2002 ◽  
Vol 04 (04) ◽  
pp. 475-492 ◽  
Author(s):  
CHARLES KELLY

The linkages between disaster and environmental damage are recognized as important to predicting, preventing and mitigating the impact of disasters. Environmental Impact Assessment (EIA) procedures are well developed for non-ndisaster situations. However, they are conceptually and operationally inappropriate for use in disaster conditions, particularly in the first 120 days after the disaster has begun. The paper provides a conceptual overview of the requirements for an environmental impact assessment procedure appropriate for disaster conditions. These requirements are captured in guidelines for a Rapid Environmental Impact Assessment (REA) for use in disasters. The REA guides the collection and assessment of a wide range of factors which can indicate: (1) the negative impacts of a disaster on the environment, (2) the impacts of environmental conditions on the magnitude of a disaster and, (3) the positive or negative impacts of relief efforts on environmental conditions. The REA also provides a foundation for recovery program EIAs, thus improving the overall post disaster recovery process. The REA is designed primarily for relief cadres, but is also expected to be usable as an assessment tool with disaster victims. The paper discusses the field testing of the REA under actual disaster conditions.


2016 ◽  
Vol 43 (4) ◽  
pp. 324 ◽  
Author(s):  
Supriya Tiwari ◽  
Rüdiger Grote ◽  
Galina Churkina ◽  
Tim Butler

High concentrations of ozone (O3) can have significant impacts on the health and productivity of agricultural and forest ecosystems, leading to significant economic losses. In order to estimate this impact under a wide range of environmental conditions, the mechanisms of O3 impacts on physiological and biochemical processes have been intensively investigated. This includes the impact on stomatal conductance, the formation of reactive oxygen species and their effects on enzymes and membranes, as well as several induced and constitutive defence responses. This review summarises these processes, discusses their importance for O3 damage scenarios and assesses to which degree this knowledge is currently used in ecosystem models which are applied for impact analyses. We found that even in highly sophisticated models, feedbacks affecting regulation, detoxification capacity and vulnerability are generally not considered. This implies that O3 inflicted alterations in carbon and water balances cannot be sufficiently well described to cover immediate plant responses under changing environmental conditions. Therefore, we suggest conceptual models that link the depicted feedbacks to available process-based descriptions of stomatal conductance, photosynthesis and isoprenoid formation, particularly the linkage to isoprenoid models opens up new options for describing biosphere-atmosphere interactions.


2021 ◽  
Author(s):  
Hanbang Zou ◽  
Pelle Ohlsson ◽  
Edith Hammer

<p>Carbon sequestration has been a popular research topic in recent years as the rapid elevation of carbon emission has significantly impacted our climate. Apart from carbon capture and storage in e.g. oil reservoirs, soil carbon sequestration offers a long term and safe solution for the environment and human beings. The net soil carbon budget is determined by the balance between terrestrial ecosystem sink and sources of respiration to atmospheric carbon dioxide. Carbon can be long term stored as organic matters in the soil whereas it can be released from the decomposition of organic matter. The complex pore networks in the soil are believed to be able to "protect" microbial-derived organic matter from decomposition. Therefore, it is important to understand how soil structure impacts organic matter cycling at the pore scale. However, there are limited experimental studies on understanding the mechanism of physical stabilization of organic matter. Hence, my project plan is to create a heterogeneous microfluidic porous microenvironment to mimic the complex soil pore network which allows us to investigate the ability of organisms to access spaces starting from an initial ecophysiological precondition to changes of spatial accessibility mediated by interactions with the microbial community.</p><p>Microfluidics is a powerful tool that enables studies of fundamental physics, rapid measurements and real-time visualisation in a complex spatial microstructure that can be designed and controlled. Many complex processes can now be visualized enabled by the development of microfluidics and photolithography, such as microbial dynamics in pore-scale soil systems and pore network modification mimicking different soil environments – earlier considered impossible to achieve experimentally. The microfluidic channel used in this project contains a random distribution of cylindrical pillars of different sizes so as to mimic the variations found in real soil. The randomness in the design creates various spatial availability for microbes (preferential flow paths with dead-end or continuous flow) as an invasion of liquids proceeds into the pore with the lowest capillary entry pressure. In order to study the impact of different porosity in isolation of varying heterogeneity of the porous medium, different pore size chips that use the same randomly generated pore network is created. Those chips have the same location of the pillars, but the relative size of each pillar is scaled. The experiments will be carried out using sterile cultures of fluorescent bacteria, fungi and protists, synthetic communities of combinations of these, or a whole soil community inoculum. We will quantify the consumption of organic matter from the different areas via fluorescent substrates, and the bio-/necromass produced. We hypothesise that lower porosity will reduce the net decomposition of organic matter as the narrower pore throat limits the access, and that net decomposition rate at the main preferential path will be higher than inside branches</p>


Author(s):  
Allison Neil

Soil properties are strongly influenced by the composition of the surrounding vegetation. We investigated soil properties of three ecosystems; a coniferous forest, a deciduous forest and an agricultural grassland, to determine the impact of land use change on soil properties. Disturbances such as deforestation followed by cultivation can severely alter soil properties, including losses of soil carbon. We collected nine 40 cm cores from three ecosystem types on the Roebuck Farm, north of Perth Village, Ontario, Canada. Dominant species in each ecosystem included hemlock and white pine in the coniferous forest; sugar maple, birch and beech in the deciduous forest; grasses, legumes and herbs in the grassland. Soil pH varied little between the three ecosystems and over depth. Soils under grassland vegetation had the highest bulk density, especially near the surface. The forest sites showed higher cation exchange capacity and soil moisture than the grassland; these differences largely resulted from higher organic matter levels in the surface forest soils. Vertical distribution of organic matter varied greatly amongst the three ecosystems. In the forest, more of the organic matter was located near the surface, while in the grassland organic matter concentrations varied little with depth. The results suggest that changes in land cover and land use alters litter inputs and nutrient cycling rates, modifying soil physical and chemical properties. Our results further suggest that conversion of forest into agricultural land in this area can lead to a decline in soil carbon storage.


Sign in / Sign up

Export Citation Format

Share Document