Nitrogen Assimilation in an Improved Alfalfa Population 1

Crop Science ◽  
1985 ◽  
Vol 25 (6) ◽  
pp. 1011-1015 ◽  
Author(s):  
Donald A. Phillips ◽  
Scott D. Cunningham ◽  
Eulogio J. Bedmar ◽  
T. Colleen Sweeney ◽  
Larry R. Teuber
2021 ◽  
Vol 288 ◽  
pp. 110315
Author(s):  
Xiaoyang Sun ◽  
Qianjiao Zheng ◽  
Liangbing Xiong ◽  
Fuchun Xie ◽  
Xun Li ◽  
...  

2021 ◽  
Vol 265 ◽  
pp. 108104
Author(s):  
Santiago Julián Kelly ◽  
María Gabriela Cano ◽  
Diego Darío Fanello ◽  
Eduardo Alberto Tambussi ◽  
Juan José Guiamet

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lei Feng ◽  
Wanli Xu ◽  
Guangmu Tang ◽  
Meiying Gu ◽  
Zengchao Geng

Abstract Background Raising nitrogen use efficiency of crops by improving root system architecture is highly essential not only to reduce costs of agricultural production but also to mitigate climate change. The physiological mechanisms of how biochar affects nitrogen assimilation by crop seedlings have not been well elucidated. Results Here, we report changes in root system architecture, activities of the key enzymes involved in nitrogen assimilation, and cytokinin (CTK) at the seedling stage of cotton with reduced urea usage and biochar application at different soil layers (0–10 cm and 10–20 cm). Active root absorption area, fresh weight, and nitrogen agronomic efficiency increased significantly when urea usage was reduced by 25% and biochar was applied in the surface soil layer. Glutamine oxoglutarate amino transferase (GOGAT) activity was closely related to the application depth of urea/biochar, and it increased when urea/biochar was applied in the 0–10 cm layer. Glutamic-pyruvic transaminase activity (GPT) increased significantly as well. Nitrate reductase (NR) activity was stimulated by CTK in the very fine roots but inhibited in the fine roots. In addition, AMT1;1, gdh3, and gdh2 were significantly up-regulated in the very fine roots when urea usage was reduced by 25% and biochar was applied. Conclusion Nitrogen assimilation efficiency was significantly affected when urea usage was reduced by 25% and biochar was applied in the surface soil layer at the seedling stage of cotton. The co-expression of gdh3 and gdh2 in the fine roots increased nitrogen agronomic efficiency. The synergistic expression of the ammonium transporter gene and gdh3 suggests that biochar may be beneficial to amino acid metabolism.


1997 ◽  
Vol 9 (8) ◽  
pp. 1339 ◽  
Author(s):  
Lifang Shi ◽  
Scott N. Twary ◽  
Hirofumi Yoshioka ◽  
Robert G. Gregerson ◽  
Susan S. Miller ◽  
...  

1977 ◽  
Vol 2 (5) ◽  
pp. 267-270
Author(s):  
J.T. Beatty ◽  
B.C. Johansson ◽  
J.D. Wall ◽  
Howard Gest

1987 ◽  
Vol 65 (3) ◽  
pp. 432-437 ◽  
Author(s):  
Iftikhar Ahmad ◽  
Johan A. Hellebust

Stichococcus bacillaris Naeg. (Chlorophyceae) grown on a 12 h light: 12 h dark cycle divides synchronously under photoautotrophic conditions and essentially nonsynchronously under mixotrophic conditions. Photoassimilation of carbon under photoautotrophic conditions was followed by a decline in cell carbon content during the dark period, whereas under mixotrophic conditions cell carbon increased throughout the light–dark cycle. The rates of nitrogen assimilation by cultures grown on either nitrate or ammonium declined sharply during the dark, and these declines were most pronounced under photoautotrophic conditions. Photoautotrophic cells synthesized glutamine synthetase and NADPH – glutamate dehydrogenase (GDH) exclusively in the light, whereas in mixotrophic cells about 20% of the total synthesis of these enzymes during one light–dark cycle occurred in the dark. NADH–GDH was synthesized almost continuously over the entire light–dark cycle. In the dark, both under photoautotrophic and mixotrophic conditions, the alga contained more than 50% of glutamine synthetase in an inactive form, which was reactivated in vitro in the presence of mercaptoethanol and in vivo after returning the cultures to the light. The thermal stability of glutamine synthetase activity was less in light-harvested cells than in dark-harvested cells. The inactivation of glutamine synthetase did not occur in cultures growing either heterotrophically in continuous darkness or photoautotrophically in continuous light. This enzyme appears to be under thiol control only in cells grown under alternating light–dark conditions, irrespective of whether this light regime results in synchronous cell division or not.


Sign in / Sign up

Export Citation Format

Share Document