Soybean Seed Yield and Quality as a Response to Field Pennycress Residue

Crop Science ◽  
2012 ◽  
Vol 52 (6) ◽  
pp. 2767-2773 ◽  
Author(s):  
Winthrop B. Phippen ◽  
Mary E. Phippen
Agronomy ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 168 ◽  
Author(s):  
Nasir Iqbal ◽  
Sajad Hussain ◽  
Xiao-Wen Zhang ◽  
Cai-Qiong Yang ◽  
Muhammad Raza ◽  
...  

Water imbalance condition (WIC) in a maize-soybean relay intercropping system is the main abiotic stress limiting biomass production and seed yield and, consequently, seed-quality. This experiment was started to study the effects of WIC on soybean, in which two soybean genotypes ND12 and C103 were grown in pots with roots split equally between two soil column and six WIC treatments (%) T1 (100), T2, (100:50), T3 (100:20), T4 (50:50), T5 (50:20), and T6 (20:20) field capacity on both sides of soybean roots were used. Results showed that both genotypes responded significantly to WIC treatments for all the parameters; however, the level of response differed between genotypes. Maximum osmoprotectants (except proline), biomass, yield and yield-related traits and superior seed quality were observed with ND12. Among WIC treatments, T2 and T3 produced 94% and 85%, and 93% and 81% of T1 biomass and yield, respectively. Similarly, treatments T2 and T3 also improved the oil quality by maintaining the content of unsaturated fatty acids and isoflavone content, while opposite trends were observed for protein content. Overall, moderate water reduction (T2 and T3) can improve soybean seed-quality and by selecting drought-resistant genotypes we can increase the soybean yield under intercropping systems.


Weed Science ◽  
1992 ◽  
Vol 40 (1) ◽  
pp. 110-114 ◽  
Author(s):  
Robert E. Blackshaw ◽  
Robert J. Morrison ◽  
H.-Henning Muendel ◽  
Blair T. Roth

Field studies were conducted to determine suitability of flurtamone alone and in tank mixture with ethalfluralin for selective control of weeds in safflower. Flurtamone at 0.6 to 0.9 kg ha−1 controlled field pennycress, kochia, and Russian thistle. Flurtamone and ethalfluralin were compatible in tank mixture and provided comparable or superior control of wild oat, kochia, and field pennycress than either herbicide alone. Plant height, date of flowering, seed yield, and quality data indicated that safflower tolerated flurtamone alone up to 1.6 kg ha−1 and flurtamone tank mixed with ethalfluralin at rates as high as 1.1 plus 1.1 kg tar1, respectively. Safflower yield response to these herbicides was positive and reflected level of weed control attained with various treatments.


Crop Science ◽  
1996 ◽  
Vol 36 (1) ◽  
pp. 98-104 ◽  
Author(s):  
L. R. Gibson ◽  
R. E. Mullen

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1427
Author(s):  
Gulen Ozyazici

Environmental contamination and the excessive use of inorganic fertilizers resulting in stagnant yields of field crops which necessitate the utilization of combined fertilization approach under changing climatic conditions. Current study was aimed to clarify the influence of several fertilizer sources (chemical, organic, organomineral fertilizers) on yield and quality of coriander (Coriandrum sativum L.). The results revealed that the fertilizer sources significantly affected the yield of coriander cultivars. The absence of “Year x Variety x Fertilizer Type” interactions for any of the noted parameters signaled that the detected “Variety x Fertilizer Type” interactions were constant regardless of the year factor. The recorded values of traits according to fertilizer sources different for the plant height from 61.85 to 69.67 cm, number of branches from 5.98 to 7.71 (piece/plant), number of umbels per the main umbel from 5.62 to 7.18 pieces, seed yield from 1.06 to 1.66 t/ha, the biological yield from 4.29 to 5.70 t ha−1, harvest index from 25.29 to 29.41%, essential oil ratio from 0.29 to 0.33%, and essential oil yield from 3.1 to 5.6 L ha−1. Erbaa variety was observed to be superior over the rest of the varieties producing the maximum values of 6.5 L ha−1 of essential oil, 0.36% essential oil content, 30.9% harvest index, 1.81 t/ha seed yield, and 5.9 t ha−1 biological yield with the treatment of chemical fertilizers.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 574
Author(s):  
Yun-Yin Feng ◽  
Jin He ◽  
Yi Jin ◽  
Feng-Min Li

Both water stress and P deficit limit soybean seed yield, but the effects of water regimes and P application rates, their interaction on P status, acquisition, and partitioning, and their roles in yield performance have not been well-studied. Two soybean genotypes (Huangsedadou (HD) and Zhonghuang 30 (ZH)) with contrasting seed yield and root dry weight (DW) were used to investigate the P status, P acquisition, P partitioning, and yield formation under two water regimes (well-watered (WW) and cyclic water stress (WS)) and three P rates (0 (P0), 60 (P60), and 120 (P120) mg P kg−1 dry soil). The results show that increased P and water supply increased the seed yield, shoot and root DW and P concentrations and accumulations in different organs. Cultivar ZH had a significantly higher seed yield than HD at P60 and P120 under WS and at P0 under WW, but a lower seed yield at P60 and P120 under WW. Cultivar ZH had a significantly higher P harvest index and P acquisition efficiency, but a significantly lower shoot and root DW than HD. The interaction between water treatments and P rates had significant effects on leaf and stem P concentration. Cultivar ZH had significantly lower P partitioning to leaves and stems but significantly higher P partitioning to seeds than HD. The seed yield was positively correlated with leaf and seed P accumulations and P acquisition efficiency under WS. We conclude that (1) adequate water supply improved the P mobilization from leaves and stems at maturity, which may have improved the seed yield; and (2) the high P acquisition efficiency is coordination to high P partition to seeds to produce a high seed yield under water- and P-limited conditions.


Sign in / Sign up

Export Citation Format

Share Document