Response of Soil Organic Carbon, pH, Electrical Conductivity, and Water Stable Aggregates to Long-Term Annual Manure and Inorganic Fertilizer

2018 ◽  
Vol 82 (5) ◽  
pp. 1243-1251 ◽  
Author(s):  
Ekrem Ozlu ◽  
Sandeep Kumar
Author(s):  
M. Sharath Chandra ◽  
R. K. Naresh ◽  
B. Chandra Sheker ◽  
N. C. Mahajan ◽  
J. Vijay

Soil organic carbon (SOC) and its labile fractions are strong determinants of soil chemical, physical, and biological properties and the recycling of crop residues is an important factor affecting soil organic matter levels and soil quality. This collected review literature specifically aims on soil fertility related to aggregate associated carbon, aggregate-size distribution, aggregation and storage of soil organic carbon trends and their respond towards organic and synthetic fertilizers and also understanding of the effects of diverse soil management regimes on SOC sequestration in cereal systems. Several studies results showed that, with the exception of unfertilized control (CK) and nitrogen fertilizer (N) treatment, the concentration of SOCs in the soil layer 0-20 cm increased. The SOC concentration and storage to depths of 60 cm is significantly affected by long-term fertilization. SOC concentrations and stocks below 60 cm for all treatments were statistically insignificant. The degree of SOC was higher in farmyard manure plus N and P fertilizers (NP+FYM) at different depths, compared with CK, at 0-60 cm soil profile and followed by straw plus N and P fertilizers (NP+S) respectively. SOC storage in NP+FYM, NP+S, FYM and nitrogen and phosphorus (NP) fertilizers treatments increased by 41.3%, 32.9%, 28.1% and 17.9% respectively compared to CK treatment in 0–60 cm. Organic manure plus inorganic fertilizer application also increased organic carbon pools of the labile soil at depths of 0–60 cm. Particulate organic carbon (POC), dissolved organic carbon (DOC) and microbial biomass carbon (MBC) average concentration in organic manure plus inorganic fertilizer treatments (NP+S and NP+FYM) increased by 64.9–91.9 percent, 42.5–56.9 percent and 74.7–99.4 percent over CK treatment. The average control treatment SOC concentration was 0.54 percent, which increased to 0.65 percent in RDF treatment and 0.82 percent in RDF+FYM treatment and increased enzyme activity, potentially affecting soil nutrient dynamics in field conditions. The RDF+FYM treatment sequestered 0.28 Mg C ha-1 yr-1 compared with the control treatment while the NPK treatment sequestered 0.13 Mg C ha-1 yr-1 respectively. It can be concluded that long-term additions of organic manure have the most beneficial effects on the production of carbon pools, improve the availability of SOCs and also enhance C sequestration in soils.


2019 ◽  
Vol 11 (3) ◽  
pp. 124
Author(s):  
Aristides O. Ngolo ◽  
Maurílio F. Oliveira ◽  
Igor R. Assis ◽  
Genelício C. Rocha ◽  
Raphael B. A. Fernandes

Long-term studies aiming soil quality evaluation under different soil management strategies are no common. Long-term evaluations provided more reliable contributions to decision-making and practices adoption. This study evaluated the soil physical quality of a Brazilian Cerrado Latosol after 21 years of three different soil management strategies: disc plowing (DP), no-tillage (NT), and disc harrowing+subsoiling (DHS). In comparison to the reference, a soil from a native Cerrado area, the removal of the original vegetation and the implementation of the three soil management strategies increased the soil bulk density (Bd) and reduced soil porosity, macroporosity, soil organic carbon (SOC) and the size of water-stable aggregates, but did not change the glomalin-related soil protein (GRSP) contents and clay flocculation. Similar effects were diagnosed on soil physical quality when is considered only the three different management strategies, especially on soil porosity, Bd, size of water-stable aggregates, SOC and GRSP contents. Strategies of DP and NT increased soil resistance to penetration in the superficial layers, while the annual use of DHS reduced this soil mechanical characteristic. The NT system did not provide increasing of soil organic carbon in comparison to other management practices evaluated. In conclusion, removing the native vegetation affected soil physical quality, but the Brazilian Cerrado soil is resilient to physical damage even when different intensive farming practices are implemented for more than two decades. The limitation of the NT system in improving the soil physical quality is related to climate conditions that determine the non-maintenance of straw on the soil surface.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1036
Author(s):  
Sauro Simoni ◽  
Giovanni Caruso ◽  
Nadia Vignozzi ◽  
Riccardo Gucci ◽  
Giuseppe Valboa ◽  
...  

Edaphic arthropod communities provide valuable information about the prevailing status of soil quality to improve the functionality and long-term sustainability of soil management. The study aimed at evaluating the effect of plant and grass cover on the functional biodiversity and soil characteristics in a mature olive orchard (Olea europaea L.) managed for ten years by two conservation soil managements: natural grass cover (NC) and conservation tillage (CT). The trees under CT grew and yielded more than those under NC during the period of increasing yields (years 4–7) but not when they reached full production. Soil management did not affect the tree root density. Collecting samples underneath the canopy (UC) and in the inter-row space (IR), the edaphic environment was characterized by soil structure, hydrological properties, the concentration and storage of soil organic carbon pools and the distribution of microarthropod communities. The soil organic carbon pools (total and humified) were negatively affected by minimum tillage in IR, but not UC, without a loss in fruit and oil yield. The assemblages of microarthropods benefited, firstly, from the grass cover, secondly, from the canopy effect, and thirdly, from a soil structure ensuring a high air capacity and water storage. Feeding functional groups—hemiedaphic macrosaprophages, polyphages and predators—resulted in selecting the ecotonal microenvironment between the surface and edaphic habitat.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 650
Author(s):  
Jesús Aguilera-Huertas ◽  
Beatriz Lozano-García ◽  
Manuel González-Rosado ◽  
Luis Parras-Alcántara

The short- and medium—long-term effects of management and hillside position on soil organic carbon (SOC) changes were studied in a centenary Mediterranean rainfed olive grove. One way to measure these changes is to analyze the soil quality, as it assesses soil degradation degree and attempts to identify management practices for sustainable soil use. In this context, the SOC stratification index (SR-COS) is one of the best indicators of soil quality to assess the degradation degree from SOC content without analyzing other soil properties. The SR-SOC was calculated in soil profiles (horizon-by-horizon) to identify the best soil management practices for sustainable use. The following time periods and soil management combinations were tested: (i) in the medium‒long-term (17 years) from conventional tillage (CT) to no-tillage (NT), (ii) in the short-term (2 years) from CT to no-tillage with cover crops (NT-CC), and (iii) the effect in the short-term (from CT to NT-CC) of different topographic positions along a hillside. The results indicate that the SR-SOC increased with depth for all management practices. The SR-SOC ranged from 1.21 to 1.73 in CT0, from 1.48 to 3.01 in CT1, from 1.15 to 2.48 in CT2, from 1.22 to 2.39 in NT-CC and from 0.98 to 4.16 in NT; therefore, the soil quality from the SR-SOC index was not directly linked to the increase or loss of SOC along the soil profile. This demonstrates the time-variability of SR-SOC and that NT improves soil quality in the long-term.


CATENA ◽  
2017 ◽  
Vol 151 ◽  
pp. 63-73 ◽  
Author(s):  
Samuel Bouchoms ◽  
Zhengang Wang ◽  
Veerle Vanacker ◽  
Sebastian Doetterl ◽  
Kristof Van Oost

2016 ◽  
Vol 96 (4) ◽  
pp. 347-350 ◽  
Author(s):  
Elwin G. Smith ◽  
H. Henry Janzen ◽  
Lauren Scherloski ◽  
Francis J. Larney ◽  
Benjamin H. Ellert

After 47 yr of no-till and reduced summerfallow at Lethbridge, Alberta, soil organic carbon concentration and stocks increased 2.14 g kg−1 and 2.22 Mg ha−1, respectively, in the surface 7.5 cm layer. These findings confirmed the conservation value of reducing tillage and summerfallow. The annual changes were relatively small.


Sign in / Sign up

Export Citation Format

Share Document