scholarly journals Soil Physical Quality After 21 Years of Cultivation in a Brazilian Cerrado Latosol

2019 ◽  
Vol 11 (3) ◽  
pp. 124
Author(s):  
Aristides O. Ngolo ◽  
Maurílio F. Oliveira ◽  
Igor R. Assis ◽  
Genelício C. Rocha ◽  
Raphael B. A. Fernandes

Long-term studies aiming soil quality evaluation under different soil management strategies are no common. Long-term evaluations provided more reliable contributions to decision-making and practices adoption. This study evaluated the soil physical quality of a Brazilian Cerrado Latosol after 21 years of three different soil management strategies: disc plowing (DP), no-tillage (NT), and disc harrowing+subsoiling (DHS). In comparison to the reference, a soil from a native Cerrado area, the removal of the original vegetation and the implementation of the three soil management strategies increased the soil bulk density (Bd) and reduced soil porosity, macroporosity, soil organic carbon (SOC) and the size of water-stable aggregates, but did not change the glomalin-related soil protein (GRSP) contents and clay flocculation. Similar effects were diagnosed on soil physical quality when is considered only the three different management strategies, especially on soil porosity, Bd, size of water-stable aggregates, SOC and GRSP contents. Strategies of DP and NT increased soil resistance to penetration in the superficial layers, while the annual use of DHS reduced this soil mechanical characteristic. The NT system did not provide increasing of soil organic carbon in comparison to other management practices evaluated. In conclusion, removing the native vegetation affected soil physical quality, but the Brazilian Cerrado soil is resilient to physical damage even when different intensive farming practices are implemented for more than two decades. The limitation of the NT system in improving the soil physical quality is related to climate conditions that determine the non-maintenance of straw on the soil surface.

2014 ◽  
Vol 38 (2) ◽  
pp. 608-618 ◽  
Author(s):  
Eurico Lucas de Sousa Neto ◽  
Itamar Andrioli ◽  
Roberto Giolo de Almeida ◽  
Manuel Cláudio Mota Macedo ◽  
Rattan Lal

Soil physical quality is an important factor for the sustainability of agricultural systems. Thus, the aim of this study was to evaluate soil physical properties and soil organic carbon in a Typic Acrudox under an integrated crop-livestock-forest system. The experiment was carried out in Mato Grosso do Sul, Brazil. Treatments consisted of seven systems: integrated crop-livestock-forest, with 357 trees ha-1 and pasture height of 30 cm (CLF357-30); integrated crop-livestock-forest with 357 trees ha-1 and pasture height of 45 cm (CLF357-45); integrated crop-livestock-forest with 227 trees ha-1 and pasture height of 30 cm (CLF227-30); integrated crop-livestock-forest with 227 trees ha-1 and pasture height of 45 cm (CLF227-45); integrated crop-livestock with pasture height of 30 cm (CL30); integrated crop-livestock with pasture height of 45 cm (CL45) and native vegetation (NV). Soil properties were evaluated for the depths of 0-10 and 10-20 cm. All grazing treatments increased bulk density (r b) and penetration resistance (PR), and decreased total porosity (¦t) and macroporosity (¦ma), compared to NV. The values of r b (1.18-1.47 Mg m-3), ¦ma (0.14-0.17 m³ m-3) and PR (0.62-0.81 MPa) at the 0-10 cm depth were not restrictive to plant growth. The change in land use from NV to CL or CLF decreased soil organic carbon (SOC) and the soil organic carbon pool (SOCpool). All grazing treatments had a similar SOCpool at the 0-10 cm depth and were lower than that for NV (17.58 Mg ha-1).


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1036
Author(s):  
Sauro Simoni ◽  
Giovanni Caruso ◽  
Nadia Vignozzi ◽  
Riccardo Gucci ◽  
Giuseppe Valboa ◽  
...  

Edaphic arthropod communities provide valuable information about the prevailing status of soil quality to improve the functionality and long-term sustainability of soil management. The study aimed at evaluating the effect of plant and grass cover on the functional biodiversity and soil characteristics in a mature olive orchard (Olea europaea L.) managed for ten years by two conservation soil managements: natural grass cover (NC) and conservation tillage (CT). The trees under CT grew and yielded more than those under NC during the period of increasing yields (years 4–7) but not when they reached full production. Soil management did not affect the tree root density. Collecting samples underneath the canopy (UC) and in the inter-row space (IR), the edaphic environment was characterized by soil structure, hydrological properties, the concentration and storage of soil organic carbon pools and the distribution of microarthropod communities. The soil organic carbon pools (total and humified) were negatively affected by minimum tillage in IR, but not UC, without a loss in fruit and oil yield. The assemblages of microarthropods benefited, firstly, from the grass cover, secondly, from the canopy effect, and thirdly, from a soil structure ensuring a high air capacity and water storage. Feeding functional groups—hemiedaphic macrosaprophages, polyphages and predators—resulted in selecting the ecotonal microenvironment between the surface and edaphic habitat.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 650
Author(s):  
Jesús Aguilera-Huertas ◽  
Beatriz Lozano-García ◽  
Manuel González-Rosado ◽  
Luis Parras-Alcántara

The short- and medium—long-term effects of management and hillside position on soil organic carbon (SOC) changes were studied in a centenary Mediterranean rainfed olive grove. One way to measure these changes is to analyze the soil quality, as it assesses soil degradation degree and attempts to identify management practices for sustainable soil use. In this context, the SOC stratification index (SR-COS) is one of the best indicators of soil quality to assess the degradation degree from SOC content without analyzing other soil properties. The SR-SOC was calculated in soil profiles (horizon-by-horizon) to identify the best soil management practices for sustainable use. The following time periods and soil management combinations were tested: (i) in the medium‒long-term (17 years) from conventional tillage (CT) to no-tillage (NT), (ii) in the short-term (2 years) from CT to no-tillage with cover crops (NT-CC), and (iii) the effect in the short-term (from CT to NT-CC) of different topographic positions along a hillside. The results indicate that the SR-SOC increased with depth for all management practices. The SR-SOC ranged from 1.21 to 1.73 in CT0, from 1.48 to 3.01 in CT1, from 1.15 to 2.48 in CT2, from 1.22 to 2.39 in NT-CC and from 0.98 to 4.16 in NT; therefore, the soil quality from the SR-SOC index was not directly linked to the increase or loss of SOC along the soil profile. This demonstrates the time-variability of SR-SOC and that NT improves soil quality in the long-term.


Author(s):  
María Paz Salazar ◽  
Carlos Germán Soracco ◽  
Rafael Villarreal ◽  
Nicolás Guillermo Polich ◽  
Guido Lautaro Bellora ◽  
...  

Author(s):  
Paula K. Mota ◽  
Bruno M. Silva ◽  
Emerson Borghi ◽  
João H. M. Viana ◽  
Álvaro V. de Resende ◽  
...  

ABSTRACT The Brazilian Cerrado stands out in relation to grain production, however, in this region the occurrence of summer and irregular rainfall, drastically harm the non-irrigated production. Conservationist managements favor the soil physical quality and, consequently, the efficiency of soil water consumption. The objective of this study was to evaluate the soil physical quality, as a function of the conservation managements adopted, by using physical soil quality indicators, and to verify its relation with the soil organic carbon stocks and the grain yield in the Cerrado of Minas Gerais state, Brazil. For that, six treatments were evaluated: soybean (1) and maize (2) monocultures crop systems at medium level of investment in soil fertilization, soybean-maize crop succession at medium (3) and high (6) level of investment in soil fertilization, and crop succession of soybean-maize and intercropped with Urochloa ruziziensis at medium (4) and high (5) level of investment in soil fertilization, during the initial stage of no-tillage system. The treatments 3, 4, 5 and 6 showed improvement in the soil physical quality in relation to the monoculture. Pore distribution and soil organic carbon content were the main responsible for discriminating the intensified crop systems. Attributes related to water availability were important for plant growth in the 0-0.05 m layer, while for the 0.15-0.20 m layer, the highest soil aeration stood out. Productivity did not correlate with the evaluated attributes.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 291
Author(s):  
Ramón Bienes ◽  
Maria Jose Marques ◽  
Blanca Sastre ◽  
Andrés García-Díaz ◽  
Iris Esparza ◽  
...  

Long-term field trials are essential for monitoring the effects of sustainable land management strategies for adaptation and mitigation to climate change. The influence of more than thirty years of different management is analyzed on extensive crops under three tillage systems, conventional tillage (CT), minimum tillage (MT), and no-tillage (NT), and with two crop rotations, monoculture winter-wheat (Triticum aestivum L.) and wheat-vetch (Triticum aestivum L.-Vicia sativa L.), widely present in the center of Spain. The soil under NT experienced the largest change in organic carbon (SOC) sequestration, macroaggregate stability, and bulk density. In the MT and NT treatments, SOC content was still increasing after 32 years, being 26.5 and 32.2 Mg ha−1, respectively, compared to 20.8 Mg ha−1 in CT. The SOC stratification (ratio of SOC at the topsoil/SOC at the layer underneath), an indicator of soil conservation, increased with decreasing tillage intensity (2.32, 1.36, and 1.01 for NT, MT, and CT respectively). Tillage intensity affected the majority of soil parameters, except the water stable aggregates, infiltration, and porosity. The NT treatment increased available water, but only in monocropping. More water was retained at the permanent wilting point in NT treatments, which can be a disadvantage in dry periods of these edaphoclimatic conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1438
Author(s):  
Snežana Jakšić ◽  
Jordana Ninkov ◽  
Stanko Milić ◽  
Jovica Vasin ◽  
Milorad Živanov ◽  
...  

Spatial distribution of soil organic carbon (SOC) is the result of a combination of various factors related to both the natural environment and anthropogenic activities. The aim of this study was to examine (i) the state of SOC in topsoil and subsoil of vineyards compared to the nearest forest, (ii) the influence of soil management on SOC, (iii) the variation in SOC content with topographic position, (iv) the intensity of soil erosion in order to estimate the leaching of SOC from upper to lower topographic positions, and (v) the significance of SOC for the reduction of soil’s susceptibility to compaction. The study area was the vineyard region of Niš, which represents a medium-sized vineyard region in Serbia. About 32% of the total land area is affected, to some degree, by soil erosion. However, according to the mean annual soil loss rate, the total area is classified as having tolerable erosion risk. Land use was shown to be an important factor that controls SOC content. The vineyards contained less SOC than forest land. The SOC content was affected by topographic position. The interactive effect of topographic position and land use on SOC was significant. The SOC of forest land was significantly higher at the upper position than at the middle and lower positions. Spatial distribution of organic carbon in vineyards was not influenced by altitude, but occurred as a consequence of different soil management practices. The deep tillage at 60–80 cm, along with application of organic amendments, showed the potential to preserve SOC in the subsoil and prevent carbon loss from the surface layer. Penetrometric resistance values indicated optimum soil compaction in the surface layer of the soil, while low permeability was observed in deeper layers. Increases in SOC content reduce soil compaction and thus the risk of erosion and landslides. Knowledge of soil carbon distribution as a function of topographic position, land use and soil management is important for sustainable production and climate change mitigation.


Sign in / Sign up

Export Citation Format

Share Document