Estimation of Regional Groundwater Recharge Using Data from a Distributed Soil Moisture Network

2013 ◽  
Vol 12 (3) ◽  
pp. vzj2013.01.0035 ◽  
Author(s):  
Mie Andreasen ◽  
Louise Andie Andreasen ◽  
Karsten H. Jensen ◽  
Torben O. Sonnenborg ◽  
Simone Bircher
2009 ◽  
Vol 10 (2) ◽  
pp. 464-478 ◽  
Author(s):  
Pat J-F. Yeh ◽  
J. S. Famiglietti

Abstract The role of shallow unconfined aquifers in supplying water for evapotranspiration (i.e., groundwater evaporation) is investigated in this paper. Recent results from regional land surface modeling have indicated that in shallow water table areas, a large portion of evapotranspiration comes directly from aquifers. However, little field evidence at the regional scale has been reported to support this finding. Using a comprehensive 19-yr (1984–2002) monthly hydrological dataset on soil moisture, water table depth, and streamflow in Illinois, regional recharge to and evaporation from groundwater are estimated by using soil water balance computation. The 19-yr mean groundwater recharge is estimated to be 244 mm yr−1 (25% of precipitation), with uncertainty ranging from 202 to 278 mm yr−1. During the summer, the upward capillary flux from the shallow aquifer helps to maintain a high rate of evapotranspiration. Groundwater evaporation (negative groundwater recharge) occurs during the period of July–September, with a total of 31.4 mm (10% of evapotranspiration). Analysis of the relative soil saturation at 11 depths from 0 to 2 m deep supports the dominance of groundwater evaporation across the water table in dry periods. The zero-flux plane separating the recharge zone from the evapotranspiration zone propagates downward from about 70- to 110-cm depth during summer, reflecting the water supply from progressively lower layers for evapotranspiration. Despite its small magnitude, neglecting regional groundwater evaporation in shallow groundwater areas would result in underestimated root-zone soil moisture and hence evapotranspiration by as large as 20% in the dry summer seasons.


PIERS Online ◽  
2010 ◽  
Vol 6 (6) ◽  
pp. 504-508 ◽  
Author(s):  
Seung-Bum Kim ◽  
Eni Gerald Njoku

2021 ◽  
Vol 29 (7) ◽  
pp. 2411-2428
Author(s):  
Robin K. Weatherl ◽  
Maria J. Henao Salgado ◽  
Maximilian Ramgraber ◽  
Christian Moeck ◽  
Mario Schirmer

AbstractLand-use changes often have significant impact on the water cycle, including changing groundwater/surface-water interactions, modifying groundwater recharge zones, and increasing risk of contamination. Surface runoff in particular is significantly impacted by land cover. As surface runoff can act as a carrier for contaminants found at the surface, it is important to characterize runoff dynamics in anthropogenic environments. In this study, the relationship between surface runoff and groundwater recharge in urban areas is explored using a top-down water balance approach. Two empirical models were used to estimate runoff: (1) an updated, advanced method based on curve number, followed by (2) bivariate hydrograph separation. Modifications were added to each method in an attempt to better capture continuous soil-moisture processes and explicitly account for runoff from impervious surfaces. Differences between the resulting runoff estimates shed light on the complexity of the rainfall–runoff relationship, and highlight the importance of understanding soil-moisture dynamics and their control on hydro(geo)logical responses. These results were then used as input in a water balance to calculate groundwater recharge. Two approaches were used to assess the accuracy of these groundwater balance estimates: (1) comparison to calculations of groundwater recharge using the calibrated conceptual HBV Light model, and (2) comparison to groundwater recharge estimates from physically similar catchments in Switzerland that are found in the literature. In all cases, recharge is estimated at approximately 40–45% of annual precipitation. These conditions were found to closely echo those results from Swiss catchments of similar characteristics.


2019 ◽  
Vol 23 (12) ◽  
pp. 5017-5031 ◽  
Author(s):  
Aaron A. Mohammed ◽  
Igor Pavlovskii ◽  
Edwin E. Cey ◽  
Masaki Hayashi

Abstract. Snowmelt is a major source of groundwater recharge in cold regions. Throughout many landscapes snowmelt occurs when the ground is still frozen; thus frozen soil processes play an important role in snowmelt routing, and, by extension, the timing and magnitude of recharge. This study investigated the vadose zone dynamics governing snowmelt infiltration and groundwater recharge at three grassland sites in the Canadian Prairies over the winter and spring of 2017. The region is characterized by numerous topographic depressions where the ponding of snowmelt runoff results in focused infiltration and recharge. Water balance estimates showed infiltration was the dominant sink (35 %–85 %) of snowmelt under uplands (i.e. areas outside of depressions), even when the ground was frozen, with soil moisture responses indicating flow through the frozen layer. The refreezing of infiltrated meltwater during winter melt events enhanced runoff generation in subsequent melt events. At one site, time lags of up to 3 d between snow cover depletion on uplands and ponding in depressions demonstrated the role of a shallow subsurface transmission pathway or interflow through frozen soil in routing snowmelt from uplands to depressions. At all sites, depression-focused infiltration and recharge began before complete ground thaw and a significant portion (45 %–100 %) occurred while the ground was partially frozen. Relatively rapid infiltration rates and non-sequential soil moisture and groundwater responses, observed prior to ground thaw, indicated preferential flow through frozen soils. The preferential flow dynamics are attributed to macropore networks within the grassland soils, which allow infiltrated meltwater to bypass portions of the frozen soil matrix and facilitate both the lateral transport of meltwater between topographic positions and groundwater recharge through frozen ground. Both of these flow paths may facilitate preferential mass transport to groundwater.


2009 ◽  
Vol 23 (12) ◽  
pp. 2475-2489 ◽  
Author(s):  
Fakhri Manghi ◽  
Behrooz Mortazavi ◽  
Christie Crother ◽  
Moshrik R. Hamdi

1999 ◽  
Vol 35 (1) ◽  
pp. 149-161 ◽  
Author(s):  
L. Zhang ◽  
W. R. Dawes ◽  
T. J. Hatton ◽  
P. H. Reece ◽  
G. T. H. Beale ◽  
...  

2013 ◽  
Vol 17 (10) ◽  
pp. 3895-3911 ◽  
Author(s):  
R. Orth ◽  
S. I. Seneviratne

Abstract. As a key variable of the land-climate system soil moisture is a main driver of streamflow and evapotranspiration under certain conditions. Soil moisture furthermore exhibits outstanding memory (persistence) characteristics. Many studies also report distinct low frequency variations for streamflow, which are likely related to soil moisture memory. Using data from over 100 near-natural catchments located across Europe, we investigate in this study the connection between soil moisture memory and the respective memory of streamflow and evapotranspiration on different time scales. For this purpose we use a simple water balance model in which dependencies of runoff (normalised by precipitation) and evapotranspiration (normalised by radiation) on soil moisture are fitted using streamflow observations. The model therefore allows us to compute the memory characteristics of soil moisture, streamflow and evapotranspiration on the catchment scale. We find considerable memory in soil moisture and streamflow in many parts of the continent, and evapotranspiration also displays some memory at monthly time scale in some catchments. We show that the memory of streamflow and evapotranspiration jointly depend on soil moisture memory and on the strength of the coupling of streamflow and evapotranspiration to soil moisture. Furthermore, we find that the coupling strengths of streamflow and evapotranspiration to soil moisture depend on the shape of the fitted dependencies and on the variance of the meteorological forcing. To better interpret the magnitude of the respective memories across Europe, we finally provide a new perspective on hydrological memory by relating it to the mean duration required to recover from anomalies exceeding a certain threshold.


Sign in / Sign up

Export Citation Format

Share Document