Contrasting magma compositions between Cu and Au mineralized granodiorite intrusions in the Tongling ore district in South China using apatite chemical composition and Sr-Nd isotopes

2021 ◽  
2019 ◽  
Vol 46 (6) ◽  
pp. 613-620
Author(s):  
A. P. Chevychelov ◽  
P. I. Sobakin ◽  
L. I. Kuznetsova

Chemical composition of the surface water and the contents of the radionuclides 238U, 226Ra, and 222Rn in water was examined within the natural and man-made landscapes of South Yakutiya. It was demonstrated that intense water migration of these radionuclides from radioactive dump pits of the man-made landscapes of the Elkonsky uranium-ore district, which were created during the process of wide-scale exploration surveys for radioactive raw materials conducted during the last third of the 20th century, had occurred. Currently, the areas of water dissipation of 238U and 226Ra are detected at a distances of 2 km and greater from the source of the radioactive contamination along the outflow vector.


2013 ◽  
Vol 4 (3) ◽  
pp. 298-305 ◽  
Author(s):  
Bo Huang ◽  
Ming Liu ◽  
Zhaofang Ren ◽  
Xinhui Bi ◽  
Guohua Zhang ◽  
...  

2021 ◽  
Vol 29 (2) ◽  
pp. 275-280
Author(s):  
Pavel Škácha ◽  
Jiří Sejkora

The Pb-Sb mineralization with dominant stibnite and plagionite and associated semseyite and zinkenite was found in an archive material collected at the Antimonitová vein, Bohutín, Březové Hory ore district (Czech Republic). Plagionite forms subhedral aggregates up to 1 mm in size. The unit-cell parameters of plagionite for monoclinic space group C2/c refined from the X-ray powder data are: a 13.4890(17), b 11.8670(14), c 19.997(2) Å, β 107.199(8)° and V 3057.9(6) Å3. Its chemical composition (average of 26 analyses, based on 30 apfu) corresponds to the empirical formula Pb5.02Sb8.15S16.82. Associated zinkenite is forming subhedral crystals up to 1 mm in size. Its empirical formula can be expressed as (Cu0.25Ag0.02Fe0.01)Σ0.28Pb9.22Sb22.19S41.31 (average of 26 analyses, based on 73 apfu). Semseyite aggregates have the empirical formula (Pb8.72Fe0.14)8.86Sb8.42S20.73 (average of 11 analyses, based on 38 apfu).


2018 ◽  
Vol 54 (3) ◽  
pp. 1518-1534 ◽  
Author(s):  
Wang Lei ◽  
Jin Xinbiao ◽  
Xu Deming ◽  
Cai Jinhui ◽  
Wang Yaowu

Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 123 ◽  
Author(s):  
Miloš René ◽  
Zdeněk Dolníček ◽  
Jiří Sejkora ◽  
Pavel Škácha ◽  
Vladimír Šrein

Uraninite-coffinite vein-type mineralisation with significant predominance of uraninite over coffinite occurs in the Příbram, Jáchymov and Horní Slavkov ore districts and the Potůčky, Zálesí and Předbořice uranium deposits. These uranium deposits are hosted by faults that are mostly developed in low- to high-grade metamorphic rocks of the basement of the Bohemian Massif. Textural features and the chemical composition of uraninite, coffinite and ningyoite were studied using an electron microprobe. Collomorphic uraninite was the only primary uranium mineral in all deposits studied. The uraninites contained variable and elevated concentrations of PbO (1.5 wt %–5.4 wt %), CaO (0.7 wt %–8.3 wt %), and SiO2 (up to 10.0 wt %), whereas the contents of Th, Zr, REE and Y were usually below the detection limits of the electron microprobe. Coffinite usually forms by gradual coffinitization of uraninite in ore deposits and the concentration of CaO was lower than that in uraninites, varying from 0.6 wt % to 6.5 wt %. Coffinite from the Jáchymov ore district was partly enriched in Zr (up to 3.3 wt % ZrO2) and Y (up to 5.5 wt % Y2O3), and from the Potůčky uranium deposit, was distinctly enriched in P (up to 8.8 wt % P2O5), occurring in association with ningyoite. The chemical composition of ningyoite was similar to that from type locality; however, ningyoite from Potůčky was distinctly enriched in REE, containing up to 22.3 wt % REE2O3.


Sign in / Sign up

Export Citation Format

Share Document