scholarly journals Challenges and Choices in Post-Crisis East-Asia: Simulations of Investment Policy Reform in an Intertemporal, Global Model

Author(s):  
Xinshen Diao ◽  
Wenli Li ◽  
A. Erinc Yeldan
2010 ◽  
Vol 10 (9) ◽  
pp. 4221-4239 ◽  
Author(s):  
M. Lin ◽  
T. Holloway ◽  
G. R. Carmichael ◽  
A. M. Fiore

Abstract. Understanding the exchange processes between the atmospheric boundary layer and the free troposphere is crucial for estimating hemispheric transport of air pollution. Most studies of hemispheric air pollution transport have taken a large-scale perspective using global chemical transport models with fairly coarse spatial and temporal resolutions. In support of United Nations Task Force on Hemispheric Transport of Air Pollution (TF HTAP; www.htap.org), this study employs two high-resolution atmospheric chemistry models (WRF-Chem and CMAQ; 36×36 km) driven with chemical boundary conditions from a global model (MOZART; 1.9×1.9°) to examine the role of fine-scale transport and chemistry processes in controlling pollution export and import over the Asian continent in spring (March 2001). Our analysis indicates the importance of rapid venting through deep convection that develops along the leading edge of frontal system convergence bands, which are not adequately resolved in either of two global models compared with TRACE-P aircraft observations during a frontal event. Both regional model simulations and observations show that frontal outflows of CO, O3 and PAN can extend to the upper troposphere (6–9 km). Pollution plumes in the global MOZART model are typically diluted and insufficiently lofted to higher altitudes where they can undergo more efficient transport in stronger winds. We use sensitivity simulations that perturb chemical boundary conditions in the CMAQ regional model to estimate that the O3 production over East Asia (EA) driven by PAN decomposition contributes 20% of the spatial averaged total O3 response to European (EU) emission perturbations in March, and occasionally contributes approximately 50% of the total O3 response in subsiding plumes at mountain observatories (at approximately 2 km altitude). The response to decomposing PAN of EU origin is strongly affected by the O3 formation chemical regimes, which vary with the model chemical mechanism and NOx/VOC emissions. Our high-resolution models demonstrate a large spatial variability (by up to a factor of 6) in the response of local O3 to 20% reductions in EU anthropogenic O3 precursor emissions. The response in the highly populated Asian megacities is 40–50% lower in our high-resolution models than the global model, suggesting that the source-receptor relationships inferred from the global coarse-resolution models likely overestimate health impacts associated with intercontinental O3 transport. Our results highlight the important roles of rapid convective transport, orographic forcing, urban photochemistry and heterogeneous boundary layer processes in controlling intercontinental transport; these processes may not be well resolved in the large-scale models.


2010 ◽  
Vol 10 (1) ◽  
pp. 109-152 ◽  
Author(s):  
M. Lin ◽  
T. Holloway ◽  
G. R. Carmichael ◽  
A. M. Fiore

Abstract. Understanding the exchange processes between the atmospheric boundary layer and the free troposphere is crucial for estimating hemispheric transport of air pollution. Most studies of hemispheric air pollution transport have taken a large-scale perspective: using global chemical transport models and focusing on synoptic-scale export events. These global models have fairly coarse spatial and temporal resolutions, and thus have a limited ability to represent boundary layer processes and urban photochemistry. In support of United Nations Task Force on Hemispheric Transport of Air Pollution (TF HTAP; http://www.htap.org), this study employs two high-resolution atmospheric chemistry models (WRF-Chem and CMAQ; 36×36 km) coupled with a global model (MOZART; 1.9×1.9°) to examine the importance of fine-scale transport and chemistry processes in controlling pollution export and import over the Asian continent. We find that the vertical lifting and outflow of Asian pollution is enhanced in the regional models throughout the study period (March 2001) as contrast to the global model. Episodic outflow of CO, PAN, and O3 to the upper troposphere during cold frontal passages is twice as great in the WRF-Chem model as compared with the MOZART model. The TRACE-P aircraft measurements indicate that the pollution plumes in MOZART are too weak and too low in the altitude, which we attribute to the global model's inability to capture rapid deep convection that develops along the leading edge of the convergence band during frontal events. In contrast to pollution export from Asia, we find little difference in the regional vs. global model transport of European (EU) pollution into surface air over East Asia (EA). Instead, the local surface characteristics – sensitivity – strongly influence surface O3 responses. For instance, the O3 response to 20% decreases in EU emissions imported into our regional model domain is strongest (0.4–0.6 ppbv) over mountainous regions and weakest (0.1–0.3 ppbv) in megacities. The spatial averaged O3 response over EA estimated by our regional models is ~0.1 ppbv lower than global model estimates. Our results suggest that global models tend to underestimate the total budget of Asian pollutants exported to the free troposphere given their limited ability to properly capture vertical convection and lifting. Due to the compensating effects on surface O3 responses over downwind continents, future high-resolution hemispheric model analysis should provide additional insights into how the export and import processes interact, and will help to narrow the uncertainty of intercontinental source-receptor relationships.


2020 ◽  
Vol 7 (7) ◽  
Author(s):  
Yuk Sing Lui ◽  
Chi‐Yung Tam ◽  
Louis Kwan‐Shu Tse ◽  
Ka‐Ki Ng ◽  
Wai‐Nang Leung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document