Morin Inhibits Proliferation and Induces Apoptosis by Modulating miR-188-5p/PTEN/AKT Regulatory Pathway in CML Cells

2019 ◽  
Author(s):  
Zi-Yuan Nie ◽  
Lin Yang ◽  
Xiao-Jun Liu ◽  
Zhan Yang ◽  
Gao-Shan Yang ◽  
...  
Keyword(s):  
Shock ◽  
1997 ◽  
Vol 7 (Supplement) ◽  
pp. 35
Author(s):  
A. E. Alipio ◽  
A. A. Shnyra ◽  
D. C. Morrison

2021 ◽  
Author(s):  
Rami Abou Zeinab ◽  
H Helena Wu ◽  
Yasser Abuetabh ◽  
Sarah Leng ◽  
Consolato Sergi ◽  
...  

Abstract Pirh2 is an E3 ligase belonging to the RING-H2 family and shown to bind, ubiquitinate and downregulate p73 tumor suppressor function without altering p73 protein levels. AIP4, an E3 ligase belonging to the HECT domain family, has been reported to be a negative regulatory protein that promotes p73 ubiquitination and degradation. Herein, we found that Pirh2 is a key regulator of AIP4 that inhibits p73 function. Pirh2 physically interacts with AIP4 and significantly downregulates AIP4 expression. This downregulation is shown to involve the ubiquitination of AIP4 by Pirh2. Importantly, we demonstrated that the ectopic expression of Pirh2 inhibits the AIP4–p73 negative regulatory pathway, which was restored when depleting endogenous Pirh2 utilizing Pirh2-siRNAs. We further observed that Pirh2 decreases AIP4-mediated p73 ubiquitination. At the translational level and specifically regarding p73 cell cycle arrest function, Pirh2 still ensures the arrest of p73-mediated G1 despite AIP4 expression. Our study reveals a novel link between two E3 ligases previously thought to be unrelated in regulating the same effector substrate, p73. These findings open a gateway to explain how E3 ligases differentiate between regulating multiple substrates that may belong to the same family of proteins, as it is the case for the p53 and p73 proteins.


RSC Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 5000-5000
Author(s):  
Laura Fisher

Retraction of ‘Long non-coding RNA GACAT1 alleviates doxorubicin and vincristine resistance through a PTEN/AKT/mTOR/S6K1 regulatory pathway in gastric cancer’ by Hengxuan Ding et al., RSC Adv., 2019, 9, 8048–8055, DOI: 10.1039/C8RA10030F.


Author(s):  
Thi Nga Nguyen ◽  
Hideaki Suzuki ◽  
Jun-ichi Ohkubo ◽  
Tetsuro Wakasugi ◽  
Takuro Kitamura

<b><i>Background:</i></b> The ciliary beat of the airway epithelium, including the sinonasal epithelium, has a significant role in frontline defense and is thought to be controlled by the level of intracellular Ca<sup>2+</sup>. Involvement of calmodulin and adenylate/guanylate cyclases in the regulation of ciliary beats has been reported, and here we investigated the interrelation between these components of the ciliary beat regulatory pathway. <b><i>Methods:</i></b> The inferior turbinates were collected from 29 patients with chronic hypertrophic rhinitis/rhinosinusitis during endoscopic sinonasal surgery. The turbinate mucosa was cut into thin strips, and mucociliary movement was observed under a phase-contrast light microscope equipped with a high-speed digital video camera. <b><i>Results:</i></b> The ciliary beat frequency (CBF) was significantly increased by stimulation with 100 μM CALP3 (calmodulin agonist), which was completely suppressed by adding 100 µM SQ22536 (adenylate cyclase inhibitor) and 10 µM ODQ (guanylate cyclase inhibitor) together and by adding 1 µM KT5720 (protein kinase A inhibitor) and 1 µM KT5823 (protein kinase G inhibitor) together. The CBF was significantly increased by stimulation with 10 µM forskolin (adenylate cyclase activator) and 10 µM BAY41-2272 (guanylate cyclase activator) and by stimulation with 100 µM 8-bromo-cAMP (cAMP analog) and 100 µM 8-bromo-cGMP (cGMP analog), which was not changed by adding 1 µM calmidazolium (calmodulin antagonist). <b><i>Conclusions:</i></b> These results confirmed that the regulatory pathway of ciliary beats in the human nasal mucosa involves calmodulin, adenylate/guanylate cyclases, and protein kinases A/G and indicate that adenylate/guanylate cyclases and protein kinases A/G act downstream of calmodulin, but not vice versa, and that these cyclases relay calmodulin signaling.


2005 ◽  
Vol 16 (7) ◽  
pp. 3314-3322 ◽  
Author(s):  
Hortensia de la Fuente ◽  
María Mittelbrunn ◽  
Lorena Sánchez-Martín ◽  
Miguel Vicente-Manzanares ◽  
Amalia Lamana ◽  
...  

Initial adhesive contacts between T lymphocytes and dendritic cells (DCs) facilitate recognition of peptide-MHC complexes by the TCR. In this report, we studied the dynamic behavior of adhesion and Ag receptors on DCs during initial contacts with T-cells. Adhesion molecules LFA-1- and ICAM-1,3-GFP as well as MHC class II-GFP molecules were very rapidly concentrated at the DC contact area. Binding of ICAM-3, and ICAM-1 to a lesser extent, to LFA-1 expressed by mature but not immature DC, induced MHC-II clustering into the immune synapse. Also, ICAM-3 binding to DC induced the activation of the Vav1-Rac1 axis, a regulatory pathway involved in actin cytoskeleton reorganization, which was essential for MHC-II clustering on DCs. Our results support a model in which ICAM-mediated MHC-II clustering on DC constitutes a priming mechanism to enhance antigen presentation to T-cells.


2002 ◽  
Vol 184 (22) ◽  
pp. 6130-6137 ◽  
Author(s):  
Shara Allen ◽  
Julie L. Zilles ◽  
Diana M. Downs

ABSTRACT Together, the biosyntheses of histidine, purines, and thiamine pyrophosphate (TPP) contain examples of convergent, divergent, and regulatory pathway integration. Mutations in two purine biosynthetic genes (purI and purH) affect TPP biosynthesis due to flux through the purine and histidine pathways. The molecular genetic characterization of purI mutants and their respective pseudorevertants resulted in the conclusion that <1% of the wild-type activity of the PurI enzyme was sufficient for thiamine but not for purine synthesis. The respective pseudorevertants were found to be informational suppressors. In addition, it was shown that accumulation of the purine intermediate aminoimidazole carboxamide ribotide inhibits thiamine synthesis, specifically affecting the conversion of aminoimidazole ribotide to hydroxymethyl pyrimidine.


2015 ◽  
Vol 194 (4) ◽  
pp. 1413-1416 ◽  
Author(s):  
Minka Breloer ◽  
Wiebke Hartmann ◽  
Birte Blankenhaus ◽  
Marie-Luise Eschbach ◽  
Klaus Pfeffer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document