IL-1β-Activated Schwann Cells and Human Hair Keratin Compound Culture to Construct Artificial Nerve Bridging for Repair of Sciatic Nerve Defects in Sprague-Dawley Rats

2019 ◽  
Author(s):  
Jun Yang ◽  
Hangtian Wu ◽  
Tao Zhang ◽  
Dajun Chen ◽  
Jianqiang Qin ◽  
...  
Pharmacology ◽  
2009 ◽  
Vol 83 (6) ◽  
pp. 356-359 ◽  
Author(s):  
Elliot Yung ◽  
Joel M. Yarmush ◽  
Jonathan Weinberg ◽  
Joseph J. SchianodiCola ◽  
Sidhartha D. Ray

2020 ◽  
pp. 1-11
Author(s):  
Fu-Lin He ◽  
Shuai Qiu ◽  
Jian-Long Zou ◽  
Fan-Bin Gu ◽  
Zhi Yao ◽  
...  

OBJECTIVENeuropathic pain caused by traumatic neuromas is an extremely intractable clinical problem. Disorderly scar tissue accumulation and irregular and immature axon regeneration around the injury site mainly contribute to traumatic painful neuroma formation. Therefore, successfully preventing traumatic painful neuroma formation requires the effective inhibition of irregular axon regeneration and disorderly accumulation of scar tissue. Considering that chondroitin sulfate proteoglycans (CSPGs) can act on the growth cone and effectively inhibit axon regeneration, the authors designed and manufactured a CSPG-gelatin blocker to regulate the CSPGs’ spatial distribution artificially and applied it in a rat model after sciatic nerve neurectomy to evaluate its effects in preventing traumatic painful neuroma formation.METHODSSixty female Sprague Dawley rats were randomly divided into three groups (positive group: no covering; blank group: covering with gelatin blocker; and CSPG group: covering with the CSPG-gelatin blocker). Pain-related factors were evaluated 2 and 8 weeks postoperatively (n = 30). Neuroma growth, autotomy behavior, and histological features of the neuromas were assessed 8 weeks postoperatively (n = 30).RESULTSEight weeks postoperatively, typical bulb-shaped neuromas did not form in the CSPG group, and autotomy behavior was obviously better in the CSPG group (p < 0.01) than in the other two groups. Also, in the CSPG group the regenerated axons showed a lower density and more regular and improved myelination (p < 0.01). Additionally, the distribution and density of collagenous fibers and the expression of α–smooth muscle actin were significantly lower in the CSPG group than in the positive group (p < 0.01). Regarding pain-related factors, c-fos, substance P, interleukin (IL)–17, and IL-1β levels were significantly lower in the CSPG group than those in the positive and blank groups 2 weeks postoperatively (p < 0.05), while substance P and IL-17 remained lower in the CSPG group 8 weeks postoperatively (p < 0.05).CONCLUSIONSThe authors found that CSPGs loaded in a gelatin blocker can prevent traumatic neuroma formation and effectively relieve pain symptoms after sciatic nerve neurotomy by blocking irregular axon regeneration and disorderly collagenous fiber accumulation in the proximal nerve stump. These results indicate that covering the proximal nerve stump with CSPGs may be a new and promising strategy to prevent traumatic painful neuroma formation in the clinical setting.


2020 ◽  
Vol 8 (48) ◽  
pp. 11063-11073
Author(s):  
Yuqing Niu ◽  
Massimiliano Galluzzi

Schematic of nerve guidance scaffold for reconstruction of peripheral nerve defects in Sprague-Dawley rats.


1992 ◽  
Vol 263 (3) ◽  
pp. H945-H950 ◽  
Author(s):  
S. P. Sutera ◽  
K. Chang ◽  
J. Marvel ◽  
J. R. Williamson

These studies were undertaken to investigate the relationship between regional hemodynamic and hemorheological changes in the microvasculature of diabetic rats. Diabetes was induced in male Sprague-Dawley rats by injection of streptozotocin (55 mg/kg body wt). Control rats were injected with vehicle (sodium citrate buffer). A subgroup of diabetic rats was treated with an aldose reductase inhibitor (sorbinil) added to the diet in an amount to provide a daily dose of approximately 0.2 mmol.kg-1.day-1. Three weeks later all animals were anesthetized with thiobutabarbital sodium (Inactin, 100 mg/kg injected intraperitoneally) for assessment of blood flow (by injection of 15 microns microspheres) and regional hematocrit (determined by isotope-dilution techniques using 51Cr-labeled red blood cells and 125I-labeled bovine serum albumin) in selected tissues. The hematocrit in arterial blood samples was identical (approximately 46%) in controls and in diabetics. Regional hematocrits were much lower than arterial hematocrits in control rats and ranged from approximately 20% in ocular tissues, sciatic nerve, diaphragm, and skin to approximately 30% in brain, skeletal muscle, heart, and fat. Hematocrits of diabetic rats were markedly increased in ocular tissues, sciatic nerve, and skin but not in brain, heart, or skeletal muscle. These increases in regional hematocrit were associated with increases in blood flow and were largely prevented by sorbinil. Diabetes induced significant decreases in the mean transit times for whole blood and erythrocytes in all tissues examined except brain, retina, and skin.(ABSTRACT TRUNCATED AT 250 WORDS)


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Eric P. Davidson ◽  
Lawrence J. Coppey ◽  
Amey Holmes ◽  
Sergey Lupachyk ◽  
Brian L. Dake ◽  
...  

Recently a new rat model for type 2 diabetes the Zucker diabetic Sprague-Dawley (ZDSD/Pco) was created. In this study we sought to characterize the development of diabetic neuropathy in ZDSD rats using age-matched Sprague-Dawley rats as a control. Rats were examined at 34 weeks of age 12 weeks after the onset of hyperglycemia in ZDSD rats. At this time ZDSD rats were severely insulin resistant with slowing of both motor and sensory nerve conduction velocities. ZDSD rats also had fatty livers, elevated serum free fatty acids, triglycerides, and cholesterol, and elevated sciatic nerve nitrotyrosine levels. The corneas of ZDSD rats exhibited a decrease in subbasal epithelial corneal nerves and sensitivity. ZDSD rats were hypoalgesic but intraepidermal nerve fibers in the skin of the hindpaw were normal compared to Sprague-Dawley rats. However, the number of Langerhans cells was decreased. Vascular reactivity of epineurial arterioles, blood vessels that provide circulation to the sciatic nerve, to acetylcholine and calcitonin gene-related peptide was impaired in ZDSD rats. These data indicate that ZDSD rats develop many of the neural complications associated with type 2 diabetes and are a good animal model for preclinical investigations of drug development for diabetic neuropathy.


2011 ◽  
Vol 37 (6) ◽  
pp. 529-536 ◽  
Author(s):  
S. Karsidag ◽  
A. Akcal ◽  
S. Sahin ◽  
S. Karsidag ◽  
F. Kabukcuoglu ◽  
...  

We investigated the effects of acetyl-L-carnitine (ALCAR) on the recovery of sciatic nerve injuries in rats. Sprague Dawley rats were randomized to two groups: ALCAR treated (for 14 days) and control. Each group was divided into three subgroups: distal transection, proximal transection, and grafted. Distal latencies, amplitudes, and motor nerve conduction velocities were measured. In the third month, biopsies were taken and examined under light microscopy. Electrophysiological measurements demonstrated that regeneration occurred earlier and was better in the ALCAR group, particularly in the distal transection subgroup. Better results were obtained in the distal transection subgroup in terms of axonal regeneration compared with the proximal transection and grafted subgroups because the regenerating segment was shorter. ALCAR enhanced the quality of neural recovery at the different levels and in different types of repair, and led to a decline in nerve death.


2021 ◽  
Vol 06 (01) ◽  
pp. e1-e10
Author(s):  
Steven L. Peterson ◽  
Harm de Vries ◽  
Kami Collins ◽  
Hilde Geraedts ◽  
Michael J. Wheatley

Abstract Introduction Symptomatic neuroma with neuropathic pain can develop following peripheral nerve injury. Current interventions for symptomatic neuroma have unpredictable results. NEUROCAP (Polyganics, Groningen, The Netherlands) is a bioresorbable nerve capping device intended to protect a peripheral nerve end and separate the nerve from the surrounding environment, to prevent the recurrence of a symptomatic neuroma. Materials and Methods This study aims to assess the implantation effects of the NEUROCAP device in a rat sciatic nerve model during 12 months (±2 days). Forty-one adult male Sprague-Dawley rats were used in this study. They were randomly divided into a capping or test group, or a noncapping or control group for different time points of survival (12 weeks, 6 months, and 12 months). The objective of this study was evaluated regarding procedural data, adverse events, clinical observations, and histopathology. Results The overall general health of the animals was adequate throughout the study, with the exception of autotomy during the first 4 months of survival. Eight animals were euthanized early due to autotomy, excluded from the study and seven of them have been replaced. Autotomy was an expected outcome and a known limitation of the animal model, particularly as this was a full sciatic nerve transection model. Neuroma formation was observed in the control group while there was no neuroma formation present in the test group. The control group showed increased nerve outgrowth and more chaotic fascicles in comparison with the test group. The test group also had a higher percentage of myelinated fibers compared to the control group. These results indicate a preventive mode of action of the NEUROCAP with regard to neuroma formation after nerve transection in a rat sciatic nerve model. Conclusion The results indicate that NEUROCAP is safe and effective in preventing the recurrence of neuroma formation and inhibiting nerve outgrowth.


1998 ◽  
Vol 550 ◽  
Author(s):  
Y.S. Chen ◽  
C. Miller ◽  
M.H. Greer ◽  
M. Quinones ◽  
R.T. Greer

AbstractSilicone rubber multiple-lumen (ML) nerve cuffs were used for side-by-side comparisons of the effectiveness of two varieties of nerve growth stimulants (collagen gel and a gel mixture of collagen, fibronectin, and laminin) for regenerating cables across a 15 mm gap in 10 adult Sprague-Dawley rats. The filling pattern of the six tubes of the multiple-lumen portion of the cuff alternated with the collagen gel and the gel mixture of collagen, fibronectin, and laminin. After an 8 week implantation period, 53% (32 of 60) of the 0.5 mm diameter lumens displayed successful cable regeneration for both material fillings. The ML cuff experiments demonstrate the ability to bridge a 15 mm gap in the sciatic nerve of the rat by 8 weeks for relatively small diameter conduits in ML cuffs loaded with two varieties of growth stimulants. A more advanced organization including a smaller acellular region fraction and a higher vascularity is seen in the cables from the mixture-filled lumens compared to those in the cables from the collagen-filled lumens.


Biomaterials ◽  
2013 ◽  
Vol 34 (24) ◽  
pp. 5907-5914 ◽  
Author(s):  
Lauren A. Pace ◽  
Johannes F. Plate ◽  
Thomas L. Smith ◽  
Mark E. Van Dyke

Sign in / Sign up

Export Citation Format

Share Document