A Finite Element Microstructure Model Considering Crystallographic Texture for Forward and Inverse Magnetic Evaluation of Anisotropy in Steel

2019 ◽  
Author(s):  
Jun Liu ◽  
Jialong Shen ◽  
Claire L. Davis
2010 ◽  
Vol 45 (9) ◽  
pp. 965-987 ◽  
Author(s):  
Xiwen Jia ◽  
Baozhong Sun ◽  
Bohong Gu

Ballistic penetration of conically cylindrical steel projectile into 3D orthogonal woven composite (3DOWC) was investigated from finite element analyses and ballistic impact tests. Based on the observation of the microstructure of the 3DOWC, a microstructure model was established for finite element calculation. In this model, the cross-section of warp, weft and Z-direction fiber tows was regarded as rectangular. The noninterwoven warp and weft yarns were bonded together with Z-yarns. The impact damage and energy absorption of the 3DOWC penetrated by a conically cylindrical steel projectile were calculated from the microstructure model and compared with the testing results. Good agreements with experiments have been observed, especially for deformation, damage evolution, and strain wave distribution in the 3DOWC under ballistic penetration.


2006 ◽  
Vol 116-117 ◽  
pp. 320-323
Author(s):  
Moo Young Huh ◽  
J.K. Kim ◽  
Jael Chul Lee ◽  
Han Gil Suk

This work focuses on the strain states of the mid AA 3003 strip sandwiched in between either AA 3003 sheets or STS 430 sheets. For that purpose, the strain states at various through-thickness layers were analyzed by measurements of crystallographic texture and by simulations with the finite element method (FEM). During sandwich rolling, the material property of outer sheets of sandwich samples played an important role in the evolution of the strain states and the corresponding texture formation. In the mid AA 3003 sheets, rolling with the harder outer sheets gave rise to pronounced through-thickness texture gradients, whereas fairly uniform strain states prevailed during rolling with the outer sheets of the same AA 3003.


A Taylor-type model for large deformation polycrystalline plasticity is formulated and evaluated by comparing the predictions for the evolution of crystallographic texture and the stress-strain response in simple compression and tension, plane strain compression, and simple shear of initially ‘isotropic’ OFHC copper against ( a ) corresponding experiments, and ( b ) finite element simulations of these experiments using a multitude of single crystals with accounting for the satisfaction of both compatibility and equilibrium. Our experiments and calculations show that the Taylor-type model is in reasonable first-order agreement with the experiments for the evolution of texture and the overall stress-strain response of single-phase copper. The results of the finite element calculations are in much better agreement with experiments, but at a substantially higher computational expense.


2011 ◽  
Vol 21 (2) ◽  
pp. 237-266 ◽  
Author(s):  
Xiwen Jia ◽  
Baozhong Sun ◽  
Bohong Gu

The ballistic impact damages of 3D orthogonal woven fabric (3DOWF) penetrated under a conically cylindrical rigid projectile were investigated from experimental tests and finite element simulations. A microstructure model of the 3DOWF was established and imported into finite element geometrical preprocessor. In the microstructure model, the architecture of the 3DOWF has the same spatial configurations with that of the real 3DOWF, including the spatial distributions and cross-sections of warp, weft yarns, and Z-yarns. Mechanical parameters of the yarns were obtained from high-strain rate tests which near to the impact loading condition in ballistic tests. The impact damage evolutions of the 3DOWF were simulated with the commercial finite element code ABAQUS/Explicit. From the comparisons of damage morphologies and residual velocities of the projectile after perforation between experimental and finite element simulation, it was found that the simulation can reflect the impact damage precisely. Furthermore, the stress wave propagation and damage mechanisms can be revealed from the microstructure model. Insights gained from this study will prove extremely useful in further material and architectural studies that will ultimately lead to optimization of the 3DOWF structure.


1995 ◽  
Vol 24 (4) ◽  
pp. 255-272 ◽  
Author(s):  
P. Van Houtte ◽  
A. Van Bael ◽  
J. Winters

Elasto-plastic finite elements (FE) methods are nowadays widely used to simulate complex metal forming processes. It is then useful to generate an anisotropic yield criterion from the crystallographic texture and incorporate it into such model. The theory of dual plastic potentials (one in strain rate space and one in stress space) helps to achieve this. There is however a certain danger of losing the convexity of the yield locus during this procedure. Examples of this phenomenon are given and discussed. It is furthermore explained how the yield locus can be used to generate an elasto-plastic modulus for implementation in the FE code. Finally several examples of successful applications of the anisotropic FE code to metal forming problems are given.


2012 ◽  
Vol 723 ◽  
pp. 119-123 ◽  
Author(s):  
Hai Bin Yu ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Bin Zou ◽  
Hong Tao Zhu ◽  
...  

A 3D finite element polycrystalline microstructure model of ceramic tool materials is presented. Quasi-static crack propagation is modeled using the cohesive finite element method (CFEM) and the microstructure is represented by 3D Voronoi tessellation. The influences of cohesive parameters, the ratios of maximum traction of grain boundary to maximum traction of grain on the crack patterns of Al2O3 have been discussed. This study has demonstrated the capability of modeling 3D crack propagation of ceramic microstructure with CFEM and Voronoi tessellation model. It is found that the fracture mode is changed from intergranular to transgranular as the maximum traction of grain boundary is increased.


2014 ◽  
Vol 996 ◽  
pp. 924-929
Author(s):  
Clotilde Berdin ◽  
Yan Tang ◽  
Serge Pascal

Micromechanical simulations of polycrystalline zirconia using the finite element method are performed in order to obtain the stresses at the grain scale of a zirconium oxide layer, since these microstresses are important for damage prediction of the layer and then oxidation kinetics. The crystallographic texture of the layer of monoclinic zirconia is taken into account. The results show that even under high compressive macroscopic stresses, the microstresses can contribute to lateral cracking promoted by the presence of tetragonal zirconia.


Sign in / Sign up

Export Citation Format

Share Document