Giant Size- and Shape-Dependent Uniaxial Compressive Strength of Molybdenum Nano- and Microparticles

2020 ◽  
Author(s):  
A. Sharma ◽  
Eugen Rabkin ◽  
O. Kovalenko ◽  
D. Mordehai ◽  
E. Rabkin
2021 ◽  
Author(s):  
Tatiana Durmeková ◽  
Martin Bednarik ◽  
Petra Dikejová ◽  
Renáta Adamcová

Abstract The most significant factors affecting the results of Uniaxial Compressive Strength (UCS) test are the size, slenderness ratio h/d (ratio of height to diameter), and the shape of the rock specimen. The proposed experimental study shows the variable impact of these parameters on UCS values by implementing several lithological types. Standard strength tests were performed on four lithological types: granodiorite, limestone, sandstone and andesite. Cylindric and cube-shaped test specimens of different sizes were prepared from each rock. Cylindric specimens with diameter 20 mm, 35 mm, 50 mm and 70 mm with height to diameter ratio of 1:1 and 2:1, and cubic and prismatic specimens with an edge dimension of 50 mm were tested and analyzed. Obtained results of strength tests confirmed a high variability of current research opinions on how the size and shape of specimens influence the strength values of rocks. The study revealed the impossibility of conclusive correlations between the UCS and specimens to be generally applicable for all lithological types. Of the observed effects on the strength, the aspect of the specimen slenderness ratio was the most pronounced on all studied rocks.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2303
Author(s):  
Congyu Zhong ◽  
Liwen Cao ◽  
Jishi Geng ◽  
Zhihao Jiang ◽  
Shuai Zhang

Because of its weak cementation and abundant pores and cracks, it is difficult to obtain suitable samples of tectonic coal to test its mechanical properties. Therefore, the research and development of coalbed methane drilling and mining technology are restricted. In this study, tectonic coal samples are remodeled with different particle sizes to test the mechanical parameters and loading resistivity. The research results show that the particle size and gradation of tectonic coal significantly impact its uniaxial compressive strength and elastic modulus and affect changes in resistivity. As the converted particle size increases, the uniaxial compressive strength and elastic modulus decrease first and then tend to remain unchanged. The strength of the single-particle gradation coal sample decreases from 0.867 to 0.433 MPa and the elastic modulus decreases from 59.28 to 41.63 MPa with increasing particle size. The change in resistivity of the coal sample increases with increasing particle size, and the degree of resistivity variation decreases during the coal sample failure stage. In composite-particle gradation, the proportion of fine particles in the tectonic coal sample increases from 33% to 80%. Its strength and elastic modulus increase from 0.996 to 1.31 MPa and 83.96 to 125.4 MPa, respectively, and the resistivity change degree decreases. The proportion of medium particles or coarse particles increases, and the sample strength, elastic modulus, and resistivity changes all decrease.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 813
Author(s):  
Veljko Rupar ◽  
Vladimir Čebašek ◽  
Vladimir Milisavljević ◽  
Dejan Stevanović ◽  
Nikola Živanović

This paper presents a methodology for determining the uniaxial and triaxial compressive strength of heterogeneous material composed of dacite (D) and altered dacite (AD). A zone of gradual transition from altered dacite to dacite was observed in the rock mass. The mechanical properties of the rock material in that zone were determined by laboratory tests of composite samples that consisted of rock material discs. However, the functional dependence on the strength parameter alteration of the rock material (UCS, intact UCS of the rock material, and mi) with an increase in the participation of “weaker” rock material was determined based on the test results of uniaxial and triaxial compressive strength. The participation of altered dacite directly affects the mode and mechanism of failure during testing. Uniaxial compressive strength (σciUCS) and intact uniaxial compressive strength (σciTX) decrease exponentially with increased AD volumetric participation. The critical ratio at which the uniaxial compressive strength of the composite sample equals the strength of the uniform AD sample was at a percentage of 30% AD. Comparison of the obtained exponential equation with practical suggestions shows a good correspondence. The suggested methodology for determining heterogeneous rock mass strength parameters allows us to determine the influence of rock material heterogeneity on the values σciUCS, σciTX, and constant mi. Obtained σciTX and constant mi dependences define more reliable rock material strength parameter values, which can be used, along with rock mass classification systems, as a basis for assessing rock mass parameters. Therefore, it is possible to predict the strength parameters of the heterogeneous rock mass at the transition of hard (D) and weak rock (AD) based on all calculated strength parameters for different participation of AD.


Sign in / Sign up

Export Citation Format

Share Document