The Influence of Copper Addition on Crack Initiation and Propagation in an Al-Si-Mg Alloy During Cyclic Testing

2020 ◽  
Author(s):  
Toni Bogdanoff ◽  
Lucia Lattanzi ◽  
Mattia Merlin ◽  
Ehsan Ghassemali ◽  
Salem Seifeddine
Materialia ◽  
2020 ◽  
Vol 12 ◽  
pp. 100787
Author(s):  
Toni Bogdanoff ◽  
Lucia Lattanzi ◽  
Mattia Merlin ◽  
Ehsan Ghassemali ◽  
Salem Seifeddine

Author(s):  
A. Tajiri ◽  
Y. Uematsu ◽  
T. Kakiuchi ◽  
Y. Suzuki

A356-T6 cast aluminum alloy is a light weight structural material, but fatigue crack initiates and propagates from a casting defect leading to final fracture. Thus it is important to eliminate casting defects. In this study, friction stir processing (FSP) was applied to A356-T6, in which rotating tool with probe and shoulder was plunged into the material and travels along the longitudinal direction to induce severe plastic deformation, resulting in the modification of microstructure. Two different processing conditions with low and high tool rotational speeds were tried and subsequently fully reversed fatigue tests were performed to investigate the effect of processing conditions on the crack initiation and propagation behavior. The fatigue strengths were successfully improved by both conditions due to the elimination of casting defects. But the lower tool rotational speed could further improve fatigue strength than the higher speed. EBSD analyses revealed that the higher tool rotational speed resulted in the severer texture having detrimental effects on fatigue crack initiation and propagation resistances.


2000 ◽  
Author(s):  
Hongyan Zhang ◽  
Jacek Senkara ◽  
Xin Wu

Abstract In this paper mechanical aspects of cracking during single- and multi-spot welding of AA5754 was investigated by both experimental and analytical approaches. The impact of mechanical loading on crack initiation and propagation was studied with the consideration of various process parameters including the loading imposed by electrodes, the formation of liquid nugget, and constraining factors during and after welding. Tensile properties of AA5754 and their dependence on the temperature were tested at room and up to solidus temperatures, in order to provide a reference of cracking stress. Thermal-mechanical analysis was conducted based on the temperature field around the nugget and the state of stress encountered during welding. This analysis revealed that tensile stress might build up in the vicinity of the nugget during cooling, thus explained the experimental observation. General guidelines for suppressing cracking were proposed, i.e. to provide sufficient constraint around the weld spot during and after welding.


Sign in / Sign up

Export Citation Format

Share Document