3D Printed Scaffold Combined to 2D Osteoinductive Coatings To Repair a Critical-Size Mandibular Bone Defect

2020 ◽  
Author(s):  
Michael Bouyer ◽  
Charlotte Garot ◽  
Paul Machillot ◽  
Julien Vollaire ◽  
Vincent Fitzpatrick ◽  
...  
2020 ◽  
Author(s):  
Michael Bouyer ◽  
Charlotte Garot ◽  
Paul Machillot ◽  
Julien Vollaire ◽  
Vincent Fitzpatrick ◽  
...  

Abstractthe reconstruction of large bone defects (12 cm3) remains a challenge for clinicians. We developed a new critical-size mandibular bone defect model on a mini-pig, close to human clinical issues. We analyzed the bone reconstruction obtained by a 3D printed scaffold made of clinical-grade PLA, coated with a polyelectrolyte film delivering an osteogenic bioactive molecule (BMP-2). We compared the results (CT-scan, μCT, histology) to the gold standard solution, bone autograft. We demonstrated that the dose of BMP-2 delivered from the scaffold significantly influenced the amount of regenerated bone and the repair kinetics, with a clear BMP-2 dose-dependence. Bone was homogeneously formed inside the scaffold without ectopic bone formation. The bone repair was as good as for the bone autograft. The BMP-2 doses applied in our study were reduced 20 to 75-fold compared to the commercial collagen sponges used in the current clinical applications, without any adverse effects. 3D printed PLA scaffolds loaded with reduced doses of BMP-2 can be a safe and simple solution for large bone defects faced in the clinic.


2020 ◽  
Vol 16 (1) ◽  
pp. 015019 ◽  
Author(s):  
Shi Huan Han ◽  
Misun Cha ◽  
Yuan-Zhe Jin ◽  
Kyung-Mee Lee ◽  
Jae Hyup Lee

2021 ◽  
Vol 29 ◽  
pp. 163-169
Author(s):  
Lin Xu ◽  
Hao Qin ◽  
Jia Tan ◽  
Zhilin Cheng ◽  
Xiang Luo ◽  
...  

Medicina ◽  
2021 ◽  
Vol 57 (2) ◽  
pp. 180 ◽  
Author(s):  
Rodolfo Mauceri ◽  
Denise Murgia ◽  
Orazio Cicero ◽  
Luigi Paternò ◽  
Luca Fiorillo ◽  
...  

The management of critical-size bone defects is still demanding. Recently, autologous platelet concentrates in combination with bone substitute have been applied and reported in a few studies. Our aim is to report the healing of a critical-size alveolar bone defect treated with a new bone regeneration technique by means of L-PRF and L-PRF blocks. A 45-year-old woman presented a large cystic lesion; the extraction of three teeth, a cyst removal procedure, and bone regeneration procedures with L-PRF and L-PRF blocks were planned. The L-PRF block was prepared by mixing a bone substitute with a piece of L-PRF membrane and liquid fibrinogen. Additionally, after bone healing an implant-based rehabilitation was optimally performed. On the basis of the positive results, in terms of bone healing and tissue regeneration in a large bone defect, the application of L-PRF and L-PRF blocks, in agreement with the scarce literature, is suggested as a feasible procedure in selected cases.


2021 ◽  
pp. 1-7
Author(s):  
Jin Xi Lim ◽  
Min He ◽  
Alphonsus Khin Sze Chong

BACKGROUND: An increasing number of bone graft materials are commercially available and vary in their composition, mechanism of action, costs, and indications. OBJECTIVE: A commercially available PLGA scaffold produced using 3D printing technology has been used to promote the preservation of the alveolar socket after tooth extraction. We examined its influence on bone regeneration in long bones of New Zealand White rabbits. METHODS: 5.0-mm-diameter circular defects were created on the tibia bones of eight rabbits. Two groups were studied: (1) control group, in which the bone defects were left empty; (2) scaffold group, in which the PLGA scaffolds were implanted into the bone defect. Radiography was performed every two weeks postoperatively. After sacrifice, bone specimens were isolated and examined by micro-computed tomography and histology. RESULTS: Scaffolds were not degraded by eight weeks after surgery. Micro-computed tomography and histology showed that in the region of bone defects that was occupied by scaffolds, bone regeneration was compromised and the total bone volume/total volume ratio (BV/TV) was significantly lower. CONCLUSION: The implantation of this scaffold impedes bone regeneration in a non-critical bone defect. Implantation of bone scaffolds, if unnecessary, lead to a slower rate of fracture healing.


Author(s):  
Ziyue Peng ◽  
Chengqiang Wang ◽  
Chun Liu ◽  
Haixia Xu ◽  
Yihan Wang ◽  
...  

Fabricate a MgO2-contained scaffold by 3D printing to improve ischemia and hypoxia in bone defect area.


Sign in / Sign up

Export Citation Format

Share Document