scholarly journals 3D printed scaffold combined to 2D osteoinductive coatings to repair a critical-size mandibular bone defect

2020 ◽  
Author(s):  
Michael Bouyer ◽  
Charlotte Garot ◽  
Paul Machillot ◽  
Julien Vollaire ◽  
Vincent Fitzpatrick ◽  
...  

Abstractthe reconstruction of large bone defects (12 cm3) remains a challenge for clinicians. We developed a new critical-size mandibular bone defect model on a mini-pig, close to human clinical issues. We analyzed the bone reconstruction obtained by a 3D printed scaffold made of clinical-grade PLA, coated with a polyelectrolyte film delivering an osteogenic bioactive molecule (BMP-2). We compared the results (CT-scan, μCT, histology) to the gold standard solution, bone autograft. We demonstrated that the dose of BMP-2 delivered from the scaffold significantly influenced the amount of regenerated bone and the repair kinetics, with a clear BMP-2 dose-dependence. Bone was homogeneously formed inside the scaffold without ectopic bone formation. The bone repair was as good as for the bone autograft. The BMP-2 doses applied in our study were reduced 20 to 75-fold compared to the commercial collagen sponges used in the current clinical applications, without any adverse effects. 3D printed PLA scaffolds loaded with reduced doses of BMP-2 can be a safe and simple solution for large bone defects faced in the clinic.

2018 ◽  
Vol 6 (25) ◽  
pp. 4197-4204 ◽  
Author(s):  
Linyang Chu ◽  
Guoqiang Jiang ◽  
Xi-Le Hu ◽  
Tony D. James ◽  
Xiao-Peng He ◽  
...  

We report a segmental radial bone defect model used to evaluate the osteogenesis, vascularization and osseointegration of a bioactive multiphase macroporous scaffold with nano-crystal surface microstructures that can release bioactive ions.


2020 ◽  
Vol 89 (2) ◽  
pp. 163-169
Author(s):  
Robert Srnec ◽  
Andrea Nečasová ◽  
Pavel Proks ◽  
Miša Škorič ◽  
Zita Filipejová ◽  
...  

This study was conducted as an in vivo experiment in adult miniature pigs with the aim to test two new biomaterials. An iatrogenic defect was made into the central femoral diaphysis in the experimental animals and subsequently fixated by bridging plate osteosynthesis. Into the defect we implanted a cancellous autograft (control group), a pasty injectable scaffold (EXP A), and a porous 3D cylinder (EXP B). Radiological examination was performed in all animals at 0, 10, 20, 30 weeks after surgical procedure and histological assessment was performed. In the newly formed bone the osteoblastic activity was monitored. In terms of radiology, the most effective method was observed in the control group (completely healed 100%) compared to experimental groups EXP A (70.0%) and EXP B (62.5%). Histological assessment showed a higher cell count in the place of bone defect in the control group compared to experimental groups. Between the experimental groups, a higher count of bone marrow cells was found in group EXP B. Both newly developed biomaterials seem to be suitable as replacements for large bone defects, having good workability and applicability. However, compared to the control group treated with a cancellous autograft, the newly formed bone did not reach the same number of cells settling in and in some cases, full radiological healing was not reached. Nevertheless, the material was found to be grown into the original bone in all cases within the experimental groups. The new biomaterials have a great potential as a substitute in the treatment of large bone defects.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Ryo Tazawa ◽  
Kentaro Uchida ◽  
Hiroaki Minehara ◽  
Terumasa Matsuura ◽  
Tadashi Kawamura ◽  
...  

Abstract Background Delivery of bone morphogenetic protein-2 (BMP-2) via animal-derived absorbable collagen materials is used for the treatment of large bone defects. However, the administration of bovine proteins to humans is associated with the risk of zoonotic complications. We therefore examined the effect of combining BMP-2 with collagen-like peptides, poly(POG)n, in a critical-sized bone defect mouse model. Methods A 2-mm critical-sized bone defect was created in the femur of 9-week-old male C57/BL6J mice. Mice were randomly allocated into one of four treatment groups (n = 6 each): control (no treatment), poly(POG)n only, 0.2 μg, or 2.0 μg BMP-2 with poly(POG)n. New bone formation was monitored using soft X-ray radiographs, and bone formation at the bone defect site was examined using micro-computed tomography and histological examination at 4 weeks after surgery. Results Administration of 2.0 μg of BMP-2 with poly(POG)n promoted new bone formation and resulted in greater bone volume and bone mineral content than that observed in the control group and successfully achieved consolidation. In contrast, bone formation in all other groups was scarce. Conclusions Our findings suggest the potential of BMP-2 with poly(POG)n as a material, free from animal-derived collagen, for the treatment of large bone defects.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Evangelos Daskalakis ◽  
Fengyuan Liu ◽  
Boyang Huang ◽  
Anil A. Acar ◽  
Glen Cooper ◽  
...  

There is a significant unmet clinical need to prevent amputations due to large bone loss injuries. We are addressing this problem by developing a novel, cost-effective osseointegrated prosthetic solution based on the use of modular pieces, bone bricks, made with biocompatible and biodegradable materials that fit together in a Lego-like way to form the prosthesis. This paper investigates the anatomical designed bone bricks with different architectures, pore size gradients, and material compositions. Polymer and polymer-composite 3D printed bone bricks are extensively morphological, mechanical, and biological characterized. Composite bone bricks were produced by mixing polycaprolactone (PCL) with different levels of hydroxyapatite (HA) and β-tri-calcium phosphate (TCP). Results allowed to establish a correlation between bone bricksarchitecture and material composition and bone bricks performance. Reinforced bone bricks showed improved mechanical and biological results. Best mechanical properties were obtained with PCL/TCP bone bricks with 38 double zig-zag filaments and 14 spiral-like pattern filaments, while the best biological results were obtained with PCL/HA bone bricks based on 25 double zig-zag filaments and 14 spiral-like pattern filaments.


2020 ◽  
Author(s):  
Michael Bouyer ◽  
Charlotte Garot ◽  
Paul Machillot ◽  
Julien Vollaire ◽  
Vincent Fitzpatrick ◽  
...  

2020 ◽  
Vol 35 (4-5) ◽  
pp. 544-552 ◽  
Author(s):  
Wenwen Liu ◽  
Di Yang ◽  
Xinghui Wei ◽  
Shuo Guo ◽  
Ning Wang ◽  
...  

Porous titanium scaffolds can provide sufficient mechanical support and bone growth space for large segmental bone defect repair. However, they fail to restore the physiological environment of bone tissue. Barium titanate (BaTiO3) is considered a smart material that can produce an electric field in response to dynamic force. Low-intensity pulsed ultrasound stimulation (LIPUS), as a kind of micromechanical wave, can not only promote bone repair but also induce BaTiO3 to generate an electric field. In our studies, BaTiO3 was coated on porous Ti6Al4V and LIPUS was externally applied to observe the influence of the piezoelectric effect on the repair of large bone defects in vitro and in vivo. The results show that the piezoelectric effect can effectively promote the osteogenic differentiation of bone marrow stromal cells (BMSCs) in vitro as well as bone formation and growth into implants in vivo. This study provides an optional alternative to the conventional porous Ti6Al4V scaffold with enhanced osteogenesis and osseointegration for the repair of large bone defects.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Filippo Migliorini ◽  
Gerardo La Padula ◽  
Ernesto Torsiello ◽  
Filippo Spiezia ◽  
Francesco Oliva ◽  
...  

AbstractLarge bone defects resulting from musculoskeletal tumours, infections, or trauma are often unable to heal spontaneously. The challenge for surgeons is to avoid amputation, and provide the best functional outcomes. Allograft, vascularized fibular or iliac graft, hybrid graft, extracorporeal devitalized autograft, distraction osteogenesis, induced-membrane technique, and segmental prostheses are the most common surgical strategies to manage large bone defects. Given its optimal osteogenesis, osteoinduction, osteoconduction, and histocompatibility properties, along with the lower the risk of immunological rejection, autologous graft represents the most common used strategy for reconstruction of bone defects. However, the choice of the best surgical technique is still debated, and no consensus has been reached. The present study investigated the current reconstructive strategies for large bone defect after trauma, infections, or tumour excision, discussed advantages and disadvantages of each technique, debated available techniques and materials, and evaluated complications and new perspectives.


2014 ◽  
Vol 2 (43) ◽  
pp. 7583-7595 ◽  
Author(s):  
Jianhua Zhang ◽  
Shichang Zhao ◽  
Min Zhu ◽  
Yufang Zhu ◽  
Yadong Zhang ◽  
...  

The 3D-printed Fe3O4/MBG/PCL scaffolds with potential multifunctionality would be promising for use in the treatment and regeneration of large bone defects after tumor resection.


Sign in / Sign up

Export Citation Format

Share Document