Identification and Inversion of CO2 Leakage from Geological Storage by Using Maize Spectral Characteristic Indexes

2021 ◽  
Author(s):  
Lu Xue ◽  
Junjie Ma ◽  
Qian Hu ◽  
Meng Cheng ◽  
Xiaoyu Wen ◽  
...  
2020 ◽  
pp. 1-25 ◽  
Author(s):  
Kimia Mortezaei ◽  
Amin Amirlatifi ◽  
Ehsan Ghazanfari ◽  
Farshid Vahedifard

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5259
Author(s):  
Yuan-Heng Li ◽  
Chien-Hao Shen ◽  
Cheng-Yueh Wu ◽  
Bieng-Zih Hsieh

The purpose of this study is to reduce the risk of leakage of CO2 geological storage by injecting the dissolved CO2 solution instead of the supercritical CO2 injection. The reservoir simulation method is used in this study to evaluate the contributions of the different trapping mechanisms, and the safety index method is used to evaluate the risk of CO2 leakage. The function of the dissolved CO2 solution injection is performed by a case study of a deep saline aquifer. Two scenarios are designed in this study: the traditional supercritical CO2 injection and the dissolved CO2 solution injection. The contributions of different trapping mechanisms, plume migrations, and the risk of leakage are evaluated and compared. The simulation results show that the risk of leakage via a natural pathway can be decreased by the approach of injecting dissolved CO2 solution instead of supercritical CO2. The amount of the CO2 retained by the safe trapping mechanisms in the dissolved CO2 solution injection scenario is greater than that in the supercritical CO2 scenario. The process of CO2 mineralization in the dissolved CO2 solution injection scenario is also much faster than that in the supercritical CO2 scenario. Changing the injection fluid from supercritical CO2 to a dissolved CO2 solution can significantly increase the safety of the CO2 geological storage. The risk of CO2 leakage from a reservoir can be eliminated because the injected CO2 can be trapped totally by safe trapping mechanisms.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5033
Author(s):  
Amir Jahanbakhsh ◽  
Qi Liu ◽  
Mojgan Hadi Mosleh ◽  
Harshit Agrawal ◽  
Nazia Mubeen Farooqui ◽  
...  

Geological storage of CO2 in saline aquifers and depleted oil and gas reservoirs can help mitigate CO2 emissions. However, CO2 leakage over a long storage period represents a potential concern. Therefore, it is critical to establish a good understanding of the interactions between CO2–brine and cement–caprock/reservoir rock to ascertain the potential for CO2 leakage. Accordingly, in this work, we prepared a unique set of composite samples to resemble the cement–reservoir rock interface. A series of experiments simulating deep wellbore environments were performed to investigate changes in chemical, physical, mechanical, and petrophysical properties of the composite samples. Here, we present the characterisation of composite core samples, including porosity, permeability, and mechanical properties, determined before and after long-term exposure to CO2-rich brine. Some of the composite samples were further analysed by X-ray microcomputed tomography (X-ray µ-CT), X-ray diffraction (XRD), and scanning electron microscopy–energy-dispersive X-ray (SEM–EDX). Moreover, the variation of ions concentration in brine at different timescales was studied by performing inductively coupled plasma (ICP) analysis. Although no significant changes were observed in the porosity, permeability of the treated composite samples increased by an order of magnitude, due mainly to an increase in the permeability of the sandstone component of the composite samples, rather than the cement or the cement/sandstone interface. Mechanical properties, including Young’s modulus and Poisson’s ratio, were also reduced.


Fluids ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 80 ◽  
Author(s):  
Parvaneh Heidari ◽  
Hassan Hassanzadeh

Long-term geological storage of CO2 in deep saline aquifers offers the possibility of sustaining access to fossil fuels while reducing emissions. However, prior to implementation, associated risks of CO2 leakage need to be carefully addressed to ensure safety of storage. CO2 storage takes place by several trapping mechanisms that are active on different time scales. The injected CO2 may be trapped under an impermeable rock due to structural trapping. Over time, the contribution of capillary, solubility, and mineral trapping mechanisms come into play. Leaky faults and fractures provide pathways for CO2 to migrate upward toward shallower depths and reduce the effectiveness of storage. Therefore, understanding the transport processes and the impact of various forces such as viscous, capillary and gravity is necessary. In this study, a mechanistic model is developed to investigate the influence of the driving forces on CO2 migration through a water saturated leakage pathway. The developed numerical model is used to determine leakage characteristics for different rock formations from a potential CO2 storage site in central Alberta, Canada. The model allows for preliminary analysis of CO2 leakage and finds applications in screening and site selection for geological storage of CO2 in deep saline aquifers.


2014 ◽  
Vol 63 ◽  
pp. 3220-3224 ◽  
Author(s):  
Sha Wang ◽  
Junjie Ma ◽  
Lu Xue ◽  
Xiaoli Zhu ◽  
Dapeng Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document