scholarly journals Fcc → Bcc Phase Transition Kinetics in an Immiscible Binary System: Atomistic Evidence of the Twinning Mechanism of Transformation

2021 ◽  
Author(s):  
Gilles Demange ◽  
Mykola Lavrskyi ◽  
K. Chen ◽  
X. Chen ◽  
Zidong Wang ◽  
...  
2003 ◽  
Vol 68 (8) ◽  
pp. 1407-1419 ◽  
Author(s):  
Claudio Fontanesi ◽  
Roberto Andreoli ◽  
Luca Benedetti ◽  
Roberto Giovanardi ◽  
Paolo Ferrarini

The kinetics of the liquid-like → solid-like 2D phase transition of adenine adsorbed at the Hg/aqueous solution interface is studied. Attention is focused on the effect of temperature on the rate of phase change; an increase in temperature is found to cause a decrease of transition rate.


2021 ◽  
Vol 23 (15) ◽  
pp. 9211-9217
Author(s):  
Guannan Qu ◽  
Rasheed Bilal ◽  
Minsi Xin ◽  
Zhong Lv ◽  
Guangyong Jin ◽  
...  

Hydrogen bond generated between DMSO and benzene binary system induced changes in the Raman properties during phase transition.


2008 ◽  
Vol 2008 ◽  
pp. 1-4 ◽  
Author(s):  
Mohammed Hassan ◽  
Rfi Rafiuddin

Samples of general formula 4AgI-(1-)-2CuI, , have been prepared and investigated by XRD, DSC, and temperature-dependent conductivity studies. X-ray diffractograms showed the presence of binary system consisting of AgI and in the sample . Cu-substituted samples showed very similar diffractograms to that of the pure compound which indicates that no effect for the substitution on the nature of the binary system. DSC curves showed the presence of phase transition whose temperature increased with ratio in the system. Ionic conductivity measurements confirmed the occurrence of the phase transition and showed that the high temperature phase is superionic conducting, whose conductivity increases with the increasing amount in the system.


NANO ◽  
2018 ◽  
Vol 13 (09) ◽  
pp. 1850100 ◽  
Author(s):  
Rui-Feng Zhao ◽  
Bo Ren ◽  
Guo-Peng Zhang ◽  
Zhong-Xia Liu ◽  
Jian-Jian Zhang

The CrCuFeMnNi high entropy alloy (HEA) powder was synthesized by mechanical alloying. The effects of milling time and subsequent annealing on the structure evolution, thermostability and magnetic property were investigated. After 50[Formula: see text]h of milling, the CrCuFeMnNi HEA powder consisted of a major FCC phase and a small amount of BCC phase. The crystallite size and strain lattice of 50[Formula: see text]h-ball-milled CrCuFeMnNi HEA powder were 12[Formula: see text]nm and 1.02%, respectively. The powder exhibited refined morphology and excellent chemical homogeneity. The supersaturated solid solution structure of the as-milled HEA powder transformed into FCC1, FCC2, a small amount of BCC and [Formula: see text] phase in annealed state. Most of the BCC phase decomposed into FCC (mainly FCC2 phase) and [Formula: see text] phases, and the dynamic phase transition was almost in equilibrium at 900[Formula: see text]C. The saturated magnetization and coercivity force of the 50[Formula: see text]h-ball-milled CrCuFeMnNi HEA powder were respectively 16.1[Formula: see text]emu/g and 56.2[Formula: see text]Oe.


Nature ◽  
2002 ◽  
Vol 416 (6883) ◽  
pp. 811-815 ◽  
Author(s):  
Valerie J. Anderson ◽  
Henk N. W. Lekkerkerker

2011 ◽  
Vol 188 (1) ◽  
pp. 15-20 ◽  
Author(s):  
R.N. Lasovsky ◽  
G.S. Bokun ◽  
V.S. Vikhrenko

2020 ◽  
Vol MA2020-01 (1) ◽  
pp. 83-83
Author(s):  
Juan Alfonso Campos ◽  
Abhas Deva ◽  
Jarrod Lund ◽  
Aniruddha Jana ◽  
Ilenia Battiato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document