Analysis of Unsteady Blood Flow Through A Stenosed Artery with Constant and Variable Viscosities

2021 ◽  
Author(s):  
A Jimoh
2021 ◽  
pp. 1016-1024
Author(s):  
Ahmed Bakheet ◽  
Esam A. Alnussairy

Magnetohydrodynamic (MHD) effects of unsteady blood flow on Casson fluid through an artery with overlapping stenosis were investigated. The nonlinear governing equations accompanied by the appropriate boundary conditions were discretized and solved based on a finite difference technique, using the pressure correction method with MAC algorithm. Moreover, blood flow characteristics, such as the velocity profile, pressure drop, wall shear stress, and patterns of streamlines, are presented graphically and inspected thoroughly for understanding the blood flow phenomena in the stenosed artery.


2018 ◽  
Vol 9 (7) ◽  
pp. 871-879
Author(s):  
Rajesh Shrivastava ◽  
R. S. Chandel ◽  
Ajay Kumar ◽  
Keerty Shrivastava and Sanjeet Kumar

2019 ◽  
Vol 24 (2) ◽  
pp. 411-423
Author(s):  
M. Sharma ◽  
R.K. Gaur ◽  
B.K. Sharma

Abstract A mathematical model for MHD blood flow through a stenosed artery with Soret and Dufour effects in the presence of thermal radiation has been studied. A uniform magnetic field is applied perpendicular to the porous surface. The governing non-linear partial differential equations have been transformed into linear partial differential equations, which are solved numerically by applying the explicit finite difference method. The numerical results are presented graphically in the form of velocity, temperature and concentration profiles. The effects of various parameters such as the Reynolds number, Hartmann number, radiation parameter, Schmidt number and Prandtl number, Soret and Dufour parameter on the velocity, temperature and concentration have been examined with the help of graphs. The present results have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding/regulating blood flow and heat transfer in capillaries.


Sign in / Sign up

Export Citation Format

Share Document