scholarly journals Numerical Simulation of Magnetohydrodynamic Influences on Casson Model for Blood Flow through an Overlapping Stenosed Artery

2021 ◽  
pp. 1016-1024
Author(s):  
Ahmed Bakheet ◽  
Esam A. Alnussairy

Magnetohydrodynamic (MHD) effects of unsteady blood flow on Casson fluid through an artery with overlapping stenosis were investigated. The nonlinear governing equations accompanied by the appropriate boundary conditions were discretized and solved based on a finite difference technique, using the pressure correction method with MAC algorithm. Moreover, blood flow characteristics, such as the velocity profile, pressure drop, wall shear stress, and patterns of streamlines, are presented graphically and inspected thoroughly for understanding the blood flow phenomena in the stenosed artery.

2014 ◽  
Vol 11 (1-2) ◽  
pp. 39-45
Author(s):  
Rupesh K. Srivastav ◽  
V. P. Srivastava

The present investigation concerns the fluid mechanical study on the effects of the permeability of the wall through an axisymmetric stenosis in an artery assuming that the flowing blood is represented by a two-fluid model. The expressions for the blood flow characteristics, the impedance, the wall shear stress distribution in the stenotic region and the shearing stress at the stenosis throat have been derived. Results for the effects of permeability as well as of the peripheral layer on these blood flow characteristics are quantified through numerical computations and presented graphically and discussed comparatively to validate the applicability of the present model.


2013 ◽  
Vol 10 (1) ◽  
pp. 1-9
Author(s):  
Amit Medhavi

The present paper concerns with the fluid mechanical study on the effects of the permeability of the wall through an overlapping stenosis in an artery assuming that the flowing blood is represented by a macroscopic two-phase model. The expressions for the blood flow characteristics, the impedance, the wall shear stress distribution in the stenotic region, shearing stress at the stenosis throats and at the stenosis critical height have been derived. Results for the effects of permeability as well as of hematocrit on these blood flow characteristics are shown graphically and discussed briefly.


2013 ◽  
Vol 17 (2) ◽  
pp. 533-546 ◽  
Author(s):  
Noreen Akbar ◽  
T. Hayat ◽  
S. Nadeem ◽  
Awatif Hendi

Effect of heat and mass transfer on the blood flow through a tapered artery with stenosis is examined assuming blood as Jeffrey fluid. The governing equations have been modelled in cylindrical coordinates. Series solutions are constructed for the velocity, temperature, concentration, resistance impedance, wall shear stress and shearing stress at the stenosis throat. Attention has been mainly focused to the analysis of embedded parameters in converging, diverging and non-tapered situations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Obaid Ullah Mehmood ◽  
Sehrish Bibi ◽  
Dzuliana F. Jamil ◽  
Salah Uddin ◽  
Rozaini Roslan ◽  
...  

AbstractThe current work analyzes the effects of concentric ballooned catheterization and heat transfer on the hybrid nano blood flow through diseased arterial segment having both stenosis and aneurysm along its boundary. A fractional second-grade fluid model is considered which describes the non-Newtonian characteristics of the blood. Governing equations are linearized under mild stenosis and mild aneurysm assumptions. Precise articulations for various important flow characteristics such as heat transfer, hemodynamic velocity, wall shear stress, and resistance impedance are attained. Graphical portrayals for the impact of the significant parameters on the flow attributes have been devised. The streamlines of blood flow have been examined as well. The present finding is useful for drug conveyance system and biomedicines.


2013 ◽  
Vol 62 (3) ◽  
Author(s):  
Tan Yan Bin ◽  
Norzieha Mustapha

A numerical study on the influences of gravitational force on an unsteady two–dimensional nonlinear model of blood flow through a stenosed artery is presented. Blood flow through the constricted region with an irregular stenosis is considered as incompressible Newtonian fluid. The governing equations are derived from the Navier–Stokes equations, which also comprise a significant term for gravitational force in the axial momentum equation. The numerical method chosen in this study is the finite difference approximations based on Marker and Cell (MAC) method at which governing equations are develop in staggered grids for discretization. The Poisson equation of pressure is solved by successive–over–relaxation (S.O.R.) method. Pressure–velocity corrector is imposed to increase accuracy. Streamlines, wall shear stress and axial velocity profiles are plotted.


2018 ◽  
Vol 9 (7) ◽  
pp. 871-879
Author(s):  
Rajesh Shrivastava ◽  
R. S. Chandel ◽  
Ajay Kumar ◽  
Keerty Shrivastava and Sanjeet Kumar

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
R. Ponalagusamy ◽  
Ramakrishna Manchi

AbstractThe present communication presents a theoretical study of blood flow through a stenotic artery with a porous wall comprising Brinkman and Darcy layers. The governing equations describing the flow subjected to the boundary conditions have been solved analytically under the low Reynolds number and mild stenosis assumptions. Some special cases of the problem are also presented mathematically. The significant effects of the rheology of blood and porous wall of the artery on physiological flow quantities have been investigated. The results reveal that the wall shear stress at the stenotic throat increases dramatically for the thinner porous wall (i.e. smaller values of the Brinkman and Darcy regions) and the rate of increase is found to be 18.46% while it decreases for the thicker porous wall (i.e. higher values of the Brinkman and Darcy regions) and the rate of decrease is found to be 10.21%. Further, the streamline pattern in the stenotic region has been plotted and discussed.


Sign in / Sign up

Export Citation Format

Share Document