The Contrast-Enhanced MRI Could Be Substituted by Unenhanced MRI in the Differential Diagnosis of Nasopharyngeal Carcinoma But Not in Segmentation with the Aid of Deep Learning Models : An Exploratory Study in Large-Scale Population of Endemic Area

2021 ◽  
Author(s):  
Yishu Deng ◽  
Chaofeng Li ◽  
Xing Lv ◽  
Weixiong Xia ◽  
Lu-Jun Shen ◽  
...  
Author(s):  
Wenjia Cai ◽  
Jie Xu ◽  
Ke Wang ◽  
Xiaohong Liu ◽  
Wenqin Xu ◽  
...  

Abstract Anterior segment eye diseases account for a significant proportion of presentations to eye clinics worldwide, including diseases associated with corneal pathologies, anterior chamber abnormalities (e.g. blood or inflammation) and lens diseases. The construction of an automatic tool for the segmentation of anterior segment eye lesions will greatly improve the efficiency of clinical care. With research on artificial intelligence progressing in recent years, deep learning models have shown their superiority in image classification and segmentation. The training and evaluation of deep learning models should be based on a large amount of data annotated with expertise, however, such data are relatively scarce in the domain of medicine. Herein, the authors developed a new medical image annotation system, called EyeHealer. It is a large-scale anterior eye segment dataset with both eye structures and lesions annotated at the pixel level. Comprehensive experiments were conducted to verify its performance in disease classification and eye lesion segmentation. The results showed that semantic segmentation models outperformed medical segmentation models. This paper describes the establishment of the system for automated classification and segmentation tasks. The dataset will be made publicly available to encourage future research in this area.


2019 ◽  
Author(s):  
Mojtaba Haghighatlari ◽  
Gaurav Vishwakarma ◽  
Mohammad Atif Faiz Afzal ◽  
Johannes Hachmann

<div><div><div><p>We present a multitask, physics-infused deep learning model to accurately and efficiently predict refractive indices (RIs) of organic molecules, and we apply it to a library of 1.5 million compounds. We show that it outperforms earlier machine learning models by a significant margin, and that incorporating known physics into data-derived models provides valuable guardrails. Using a transfer learning approach, we augment the model to reproduce results consistent with higher-level computational chemistry training data, but with a considerably reduced number of corresponding calculations. Prediction errors of machine learning models are typically smallest for commonly observed target property values, consistent with the distribution of the training data. However, since our goal is to identify candidates with unusually large RI values, we propose a strategy to boost the performance of our model in the remoter areas of the RI distribution: We bias the model with respect to the under-represented classes of molecules that have values in the high-RI regime. By adopting a metric popular in web search engines, we evaluate our effectiveness in ranking top candidates. We confirm that the models developed in this study can reliably predict the RIs of the top 1,000 compounds, and are thus able to capture their ranking. We believe that this is the first study to develop a data-derived model that ensures the reliability of RI predictions by model augmentation in the extrapolation region on such a large scale. These results underscore the tremendous potential of machine learning in facilitating molecular (hyper)screening approaches on a massive scale and in accelerating the discovery of new compounds and materials, such as organic molecules with high-RI for applications in opto-electronics.</p></div></div></div>


2020 ◽  
Vol 34 (7) ◽  
pp. 717-730 ◽  
Author(s):  
Matthew C. Robinson ◽  
Robert C. Glen ◽  
Alpha A. Lee

Abstract Machine learning methods may have the potential to significantly accelerate drug discovery. However, the increasing rate of new methodological approaches being published in the literature raises the fundamental question of how models should be benchmarked and validated. We reanalyze the data generated by a recently published large-scale comparison of machine learning models for bioactivity prediction and arrive at a somewhat different conclusion. We show that the performance of support vector machines is competitive with that of deep learning methods. Additionally, using a series of numerical experiments, we question the relevance of area under the receiver operating characteristic curve as a metric in virtual screening. We further suggest that area under the precision–recall curve should be used in conjunction with the receiver operating characteristic curve. Our numerical experiments also highlight challenges in estimating the uncertainty in model performance via scaffold-split nested cross validation.


Sign in / Sign up

Export Citation Format

Share Document