Fault Diagnosis of Wind Turbine Bearing Using a Multi-Scale Convolutional Neural Network for Multi-Sensors

2021 ◽  
Author(s):  
Zifei Xu ◽  
Chun Li ◽  
Xinyu Wang ◽  
Jiangtao Jin
2021 ◽  
Vol 1207 (1) ◽  
pp. 012003
Author(s):  
Xukun Hou ◽  
Pengjie Hu ◽  
Wenliao Du ◽  
Xiaoyun Gong ◽  
Hongchao Wang ◽  
...  

Abstract Aiming at the typical non-stationary and nonlinear characteristics of rolling bearing vibration signals, a multi-scale convolutional neural network method for bearing fault diagnosis based on wavelet transform and one-dimensional convolutional neural network is proposed. First, the signal is decomposed into multi scale components with wavelet transform, and then each scale component is reconstructed. The reconstructed signal is subjected to the Fourier transform to obtain the frequency spectrum representation, which is used as the input of the one-dimensional convolutional neural network. Finally, one-dimensional convolution neural network is used to learn the features of the input data and recognize the bearing fault. The performance of the model is verified by using data sets of rolling bearing. The results show that this method can intelligent feature extraction and obtain 99.94% diagnostic accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7319
Author(s):  
Jiajun He ◽  
Ping Wu ◽  
Yizhi Tong ◽  
Xujie Zhang ◽  
Meizhen Lei ◽  
...  

Bearings are the key and important components of rotating machinery. Effective bearing fault diagnosis can ensure operation safety and reduce maintenance costs. This paper aims to develop a novel bearing fault diagnosis method via an improved multi-scale convolutional neural network (IMSCNN). In traditional convolutional neural network (CNN), a fixed convolutional kernel is often employed in the convolutional layer. Thus, informative features can not be fully extracted for fault diagnosis. In the proposed IMSCNN, a 1D dimensional convolutional layer is used to mitigate the effect of noise contained in vibration signals. Then, four dilated convolutional kernels with different dilation rates are integrated to extract multi-scale features through the inception structure. Experimental results from the popular CWRU and PU datasets show the superiority of the proposed method by comparison with other related methods.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2561 ◽  
Author(s):  
Wenxin Yu ◽  
Shoudao Huang ◽  
Weihong Xiao

To investigate problems involving wind turbines that easily occur but are hard to diagnose, this paper presents a wind turbine (WT) fault diagnosis algorithm based on a spectrogram and a convolutional neural network. First, the original data are sampled into a phonetic form. Then, the data are transformed into a spectrogram in the time-frequency domain. Finally, the data are sent into a convolutional neural network (CNN) model with batch regularization for training and testing. Experimental results show that the method is suitable for training a large number of samples and has good scalability. Compared with Back Propagation Neural Network (BPNN), Support Vector Machine (SVM), Extreme Learning Machine (ELM), and other fault diagnosis methods, the average diagnostic correctness rate is higher; so, the method can provide more accurate reference information for wind turbine fault diagnosis.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3937 ◽  
Author(s):  
Tengda Huang ◽  
Sheng Fu ◽  
Haonan Feng ◽  
Jiafeng Kuang

Recently, deep learning technology was successfully applied to mechanical fault diagnosis. The convolutional neural network (CNN), as a prevalent deep learning model, occupies a place in intelligent fault diagnosis, which reduces the need for human feature extraction and prior knowledge, thereby achieving an end-to-end intelligent fault diagnosis model. However, the data for mechanical fault diagnosis in practical application are limited, the CNN model is too deep and too complex, making it prone to overfitting, and a model with too simple a structure and shallow layers cannot fully learn the effective features of the data. Convolutional filters with fixed window sizes are widely used in existing CNN models, which cannot flexibly select variable pivotal features. The model may be interfered with by redundant information in feature maps during training. Therefore, in this paper, a novel shallow multi-scale convolutional neural network with attention is proposed for bearing fault diagnosis. The shallow multi-scale convolutional neural network structure can fully learn the feature information of input data without overfitting. For the first time, a feature attention mechanism is developed for fault diagnosis to adaptively select features for classification more effectively, where the pivotal feature was emphasized, and the redundant feature was weakened through an attention mechanism. The time frequency representations as the input of the model were obtained from the vibration time domain signals, which contain the complete time domain and frequency domain information of the vibration signals. Compared with the current popular diagnostic methods, the results show that the proposed diagnostic method has fairly high accuracy, and its performance is superior to the existing methods. The average recognition accuracy was 99.86%, and the weak recognition rate of I-07 and I-14 labels was improved.


Sign in / Sign up

Export Citation Format

Share Document