Investigation of Unsteady Pressure Fluctuations and Methods for Its Suppression for a Double Suction Centrifugal Pump

2021 ◽  
Author(s):  
Arihant Sonawat ◽  
Sang-Bum Ma ◽  
Seung-Jun Kim ◽  
Ju Beak Lee ◽  
Myo Suk Yu ◽  
...  
Author(s):  
Jose´ Gonza´lez ◽  
Carlos Santolaria ◽  
Eduardo Blanco ◽  
Joaqui´n Ferna´ndez

Both experimental and numerical studies of the unsteady pressure field inside a centrifugal pump have been carried out. The unsteady patterns found for the pressure fluctuations are compared and a further and more detailed flow study from the numerical model developed will be presented in this paper. Measurements were carried out with pressure transducers installed on the volute shroud. At the same time, the unsteady pressure field inside the volute of a centrifugal pump has been numerically modelled using a finite volume commercial code and the dynamic variables obtained have been compared with the experimental data available. In particular, the amplitude of the fluctuating pressure field in the shroud side wall of the volute at the blade passing frequency is successfully captured by the model for a wide range of operating flow rates. Once the developed numerical model has shown its capability in describing the unsteady patterns experimentally measured, an explanation for such patterns is searched. Moreover, the possibilities of the numerical model can be extended to other sections (besides the shroud wall of the volute), which can provide plausible explanations for the dynamic interaction effects between the flow at the impeller exit and the volute tongue at different axial positions. The results of the numerical simulation are focused in the blade passing frequency in order to study the relative effect of the two main phenomena occurring at that frequency for a given position: the blade passing in front of the tongue and the wakes of the blades.


2005 ◽  
Vol 127 (2) ◽  
pp. 363-371 ◽  
Author(s):  
Kitano Majidi

Computational fluid dynamics (CFD) analysis has been used to solve the unsteady three-dimensional viscous flow in the entire impeller and volute casing of a centrifugal pump. The results of the calculations are used to predict the impeller/volute interaction and to obtain the unsteady pressure distribution in the impeller and volute casing. The calculated unsteady pressure distribution is used to determine the unsteady blade loading. The calculations at the design point and at two off-design points are carried out with a multiple frame of reference and a sliding mesh technique is applied to consider the impeller/volute interaction. The results obtained show that the flow in the impeller and volute casing is periodically unsteady and confirm the circumferential distortion of the pressure distribution at the impeller outlet and in the volute casing. Due to the interaction between impeller blades and the tongue of the volute casing the flow is characterized by pressure fluctuations, which are strong at the impeller outlet and in the vicinity of the tongue. These pressure fluctuations are died away in the casing as the advancement angle increases. These reduced pressure fluctuations are spread to the discharge nozzle; the pressure fluctuations are also reflected to the impeller inlet and they affect the mass flow rate through the blade passages.


Author(s):  
Kitano Majidi

Computational Fluid Dynamics analysis has been used to solve the unsteady three-dimensional viscous flow in the entire impeller and volute casing of a centrifugal pump. The results of the calculations are used to predict the impeller/volute interaction and to obtain the unsteady pressure distribution in the impeller and volute casing. The calculated unsteady pressure distribution is used to determine the unsteady blade loading. The calculations at the design point and at two off-design points are carried out with a multiple frame of reference and a sliding mesh technique is applied to consider the impeller/volute interaction. The results obtained show that the flow in the impeller and volute casing is periodically unsteady and confirm the circumferential distortion of the pressure distribution at the impeller outlet and in the volute casing. Due to the interaction between impeller blades and the tongue of the volute casing the flow is characterized by pressure fluctuations, which are strong at the impeller outlet and in the vicinity of the tongue. These pressure fluctuations are died away in the casing as the advancement angle increases. These reduced pressure fluctuations are spread to the discharge nozzle; the pressure fluctuations are also reflected to the impeller inlet and they affect the mass flow rate through the blade passages.


Author(s):  
Ning Zhang ◽  
Bo Gao ◽  
Chao Li ◽  
Dan Ni ◽  
Guoping Li

Effects of the staggered blades on unsteady pressure pulsations of a centrifugal pump with a specific speed ns=147 are investigated by the numerical simulation method. The obtained results are compared with the original blades. To clarify the resulting effects, eight monitoring points are used to extract pressure signals at three typical working conditions, and component at the blade passing frequency fBPF is emphasized. Results show that the pump efficiency and head will be reduced by the staggered blades, and at the nominal flow rate, the reduction is about 1.5% from comparison with the original blades. For all the eight points, the staggered blades contribute to the reduction of pressure amplitudes at fBPF when the pump works at three flow rates. The averaged reduction is 15.5% at the nominal flow rate. However, the negative effect on the second harmonic of fBPF will be caused by the staggered blades, and the corresponding pressure amplitude will increase at 2fBPF. It means that the pressure pulsation energy will be redistributed among the discrete components in pressure spectrum by the staggered blades. From the TKE distribution, it is found that the TKE values on the blade pressure side will be significantly affected by the staggered blades.


2002 ◽  
Vol 124 (3) ◽  
pp. 784-790 ◽  
Author(s):  
Jorge L. Parrondo-Gayo ◽  
Jose´ Gonza´lez-Pe´rez ◽  
Joaquı´n Ferna´ndez-Francos

An experimental investigation is presented which analyzes the unsteady pressure distribution existing in the volute of a conventional centrifugal pump with a nondimensional specific speed of 0.48, for flow-rates from 0% to 160% of the best-efficiency point. For that purpose, pressure signals were obtained at 36 different locations along the volute casing by means of fast-response pressure transducers. Particular attention was paid to the pressure fluctuations at the blade passage frequency, regarding both amplitude and phase delay relative to the motion of the blades. Also, the experimental data obtained was used to adjust the parameters of a simple acoustic model for the volute of the pump. The results clearly show the leading role played by the tongue in the impeller-volute interaction and the strong increase in the magnitude of dynamic forces and dipole-like sound generation in off-design conditions.


1995 ◽  
Vol 117 (1) ◽  
pp. 30-35 ◽  
Author(s):  
S. Chu ◽  
R. Dong ◽  
J. Katz

Maps of pressure distributions computed using PDV data, combined with noise and local pressure measurements, are used for identifying primary sources of noise in a centrifugal pump. In the vicinity of the impeller pressure minima occur around the blade and near a vortex train generated as a result of non-uniform outflux from the impeller. The pressure everywhere also varies depending on the orientation of the impeller relative to the tongue. Noise peaks are generated when the pressure difference across the tongue is maximum, probably due to tongue oscillations, and when the wake impinges on the tip of the tongue.


2019 ◽  
Vol 36 (4) ◽  
pp. 401-410 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Zu-Chao Zhu ◽  
Yu-Liang Zhang

Abstract Affected by rotor–stator interaction and unstable inner flow, asymmetric pressure distributions and pressure fluctuations cannot be avoided in centrifugal pumps. To study the pressure distributions on volute and front casing walls, dynamic pressure tests are carried out on a centrifugal pump. Frequency spectrum analysis of pressure fluctuation is presented based on Fast Fourier transform and steady pressure distribution is obtained based on time-average method. The results show that amplitudes of pressure fluctuation and blade-passing frequency are sensitive to the flow rate. At low flow rates, high-pressure region and large pressure gradients near the volute tongue are observed, and the main factors contributing to the pressure fluctuation are fluctuations in blade-passing frequency and high-frequency fluctuations. By contrast, at high flow rates, fluctuations of rotating-frequency and low frequencies are the main contributors to pressure fluctuation. Moreover, at low flow rates, pressure near volute tongue increases rapidly at first and thereafter increases slowly, whereas at high flow rates, pressure decreases sharply. Asymmetries are observed in the pressure distributions on both volute and front casing walls. With increasing of flow rate, both asymmetries in the pressure distributions and magnitude of the pressure decrease.


Author(s):  
Can Kang ◽  
Ning Mao ◽  
Chen Pan ◽  
Yang Zhu ◽  
Bing Li

A low-specific-speed centrifugal pump equipped with long and short blades is studied. Emphasis is placed on the pump performance and inner flow characteristics at low flow rates. Each short blade is intentionally shifted towards the back surface of the neighboring long blade, and the outlet parts of the short blades are uniformly shortened. Unsteady numerical simulation is conducted to disclose inner flow patterns associated with the modified design. Thereby, a comparison is enabled between the two schemes featured by different short blades. Both practical operation data and numerical results support that the deviation and cutting of the short blades can eliminate the positive slope of pump head curve at low flow rates. Therefore, the modification of short blades improves the pump operation stability. Due to the shortening of the outlet parts of the short blades, velocity distributions between impeller outlet and radial diffuser inlet exhibit explicitly altered circumferential flow periodicity. Pressure fluctuations in the radial diffuser are complex in terms of diversified periodicity and amplitudes. Flow rate influences pressure fluctuations in the radial diffuser considerably. As flow rate decreases, the regularity of the orbit of hydraulic loads exerted upon the impeller collapses while hydraulic loads exerted upon the short blades remain circumferentially periodic.


Sign in / Sign up

Export Citation Format

Share Document