The Effect of the Operating Point on the Pressure Fluctuations at the Blade Passage Frequency in the Volute of a Centrifugal Pump

2002 ◽  
Vol 124 (3) ◽  
pp. 784-790 ◽  
Author(s):  
Jorge L. Parrondo-Gayo ◽  
Jose´ Gonza´lez-Pe´rez ◽  
Joaquı´n Ferna´ndez-Francos

An experimental investigation is presented which analyzes the unsteady pressure distribution existing in the volute of a conventional centrifugal pump with a nondimensional specific speed of 0.48, for flow-rates from 0% to 160% of the best-efficiency point. For that purpose, pressure signals were obtained at 36 different locations along the volute casing by means of fast-response pressure transducers. Particular attention was paid to the pressure fluctuations at the blade passage frequency, regarding both amplitude and phase delay relative to the motion of the blades. Also, the experimental data obtained was used to adjust the parameters of a simple acoustic model for the volute of the pump. The results clearly show the leading role played by the tongue in the impeller-volute interaction and the strong increase in the magnitude of dynamic forces and dipole-like sound generation in off-design conditions.

Author(s):  
Jose´ Gonza´les ◽  
Carlos Santolaria ◽  
Jorge Luis Parrondo ◽  
Joaqui´n Ferna´ndez ◽  
Eduardo Blanco

An experimental and numerical study is presented on the unsteady radial forces produced in a centrifugal pump with volute casing. Two impellers with different outlet diameter were considered, which gave radial gaps between blade and tongue of 10% and 15.8% of the impeller radius, respectively. Firstly, the data from pressure fluctuation measurements was processed to obtain the dynamic forces at the blade-passage frequency, for a number of flow-rates. Afterwards, these results were used to check the predictions from a numerical simulation of the pump with the code Fluent. This paper describes the work carried out and summarizes the experimental and the numerical results, for both radial gaps. The steady and unsteady forces at the blade passing frequency obtained by radial integration of the pressure distributions in the shroud side of the pump volute are analysed in detail and similar trends are obtained.


2005 ◽  
Vol 6 (1) ◽  
pp. 85-93 ◽  
Author(s):  
H Nakamura ◽  
I Asano ◽  
M Adachi ◽  
J Senda

The Pitot tube flowmetering technique has been used to measure pulsating flow from a vehicle engine exhaust. In general, flowmetering techniques that utilize differential pressure measurements based on Bernoulli's theory are likely to show erroneous readings when measuring an average flowrate of pulsating flow. The primary reason for this is the non-linear relationship between the differential pressure and the flowrate; i.e. the flowrate is proportional to the square root of the differential pressure. Therefore, an average of the differential pressure does not give an average of pulsating flow. In this study, fast response pressure transducers have been used to measure the pulsating pressure. Then the pulsating differential pressure is converted to the flowrate while keeping the pulsation unaveraged. An average flowrate is then calculated in the flowrate domain in order to maintain linearity before and after averaging. The peak amplitude of a pulsation measured here was about 1800 L/min at an average flowrate of 70 L/min when the engine ran at idle speed. This measurement has been confirmed by measuring the pulsation with a gas analyser. The results show a large amount of back and forth gas movement in the exhaust tube. This magnitude of pulsation can cause as much as five times higher erroneous results with the pressure domain averaging when compared to a flowrate domain averaging.


2019 ◽  
Vol 36 (4) ◽  
pp. 401-410 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Zu-Chao Zhu ◽  
Yu-Liang Zhang

Abstract Affected by rotor–stator interaction and unstable inner flow, asymmetric pressure distributions and pressure fluctuations cannot be avoided in centrifugal pumps. To study the pressure distributions on volute and front casing walls, dynamic pressure tests are carried out on a centrifugal pump. Frequency spectrum analysis of pressure fluctuation is presented based on Fast Fourier transform and steady pressure distribution is obtained based on time-average method. The results show that amplitudes of pressure fluctuation and blade-passing frequency are sensitive to the flow rate. At low flow rates, high-pressure region and large pressure gradients near the volute tongue are observed, and the main factors contributing to the pressure fluctuation are fluctuations in blade-passing frequency and high-frequency fluctuations. By contrast, at high flow rates, fluctuations of rotating-frequency and low frequencies are the main contributors to pressure fluctuation. Moreover, at low flow rates, pressure near volute tongue increases rapidly at first and thereafter increases slowly, whereas at high flow rates, pressure decreases sharply. Asymmetries are observed in the pressure distributions on both volute and front casing walls. With increasing of flow rate, both asymmetries in the pressure distributions and magnitude of the pressure decrease.


Author(s):  
O. Schennach ◽  
R. Pecnik ◽  
B. Paradiso ◽  
E. Go¨ttlich ◽  
A. Marn ◽  
...  

The current paper presents the results of numerical and experimental clocking investigations performed in a high-pressure transonic turbine with a downstream vane row. The objective was a detailed analysis of shock and wake interactions in such a 1.5 stage machine while clocking the vanes. Therefore a transient 3D-Navier Stokes calculation was done for two clocking positions and the three dimensional results are compared with Laser-Doppler-Velocimetry measurements at midspan. Additionally the second vane was equipped with fast response pressure transducers to record the instantaneous surface pressure for 20 different clocking positions at midspan.


Author(s):  
Can Kang ◽  
Ning Mao ◽  
Chen Pan ◽  
Yang Zhu ◽  
Bing Li

A low-specific-speed centrifugal pump equipped with long and short blades is studied. Emphasis is placed on the pump performance and inner flow characteristics at low flow rates. Each short blade is intentionally shifted towards the back surface of the neighboring long blade, and the outlet parts of the short blades are uniformly shortened. Unsteady numerical simulation is conducted to disclose inner flow patterns associated with the modified design. Thereby, a comparison is enabled between the two schemes featured by different short blades. Both practical operation data and numerical results support that the deviation and cutting of the short blades can eliminate the positive slope of pump head curve at low flow rates. Therefore, the modification of short blades improves the pump operation stability. Due to the shortening of the outlet parts of the short blades, velocity distributions between impeller outlet and radial diffuser inlet exhibit explicitly altered circumferential flow periodicity. Pressure fluctuations in the radial diffuser are complex in terms of diversified periodicity and amplitudes. Flow rate influences pressure fluctuations in the radial diffuser considerably. As flow rate decreases, the regularity of the orbit of hydraulic loads exerted upon the impeller collapses while hydraulic loads exerted upon the short blades remain circumferentially periodic.


Author(s):  
Jose´ Gonza´lez ◽  
Carlos Santolaria ◽  
Eduardo Blanco ◽  
Joaqui´n Ferna´ndez

Both experimental and numerical studies of the unsteady pressure field inside a centrifugal pump have been carried out. The unsteady patterns found for the pressure fluctuations are compared and a further and more detailed flow study from the numerical model developed will be presented in this paper. Measurements were carried out with pressure transducers installed on the volute shroud. At the same time, the unsteady pressure field inside the volute of a centrifugal pump has been numerically modelled using a finite volume commercial code and the dynamic variables obtained have been compared with the experimental data available. In particular, the amplitude of the fluctuating pressure field in the shroud side wall of the volute at the blade passing frequency is successfully captured by the model for a wide range of operating flow rates. Once the developed numerical model has shown its capability in describing the unsteady patterns experimentally measured, an explanation for such patterns is searched. Moreover, the possibilities of the numerical model can be extended to other sections (besides the shroud wall of the volute), which can provide plausible explanations for the dynamic interaction effects between the flow at the impeller exit and the volute tongue at different axial positions. The results of the numerical simulation are focused in the blade passing frequency in order to study the relative effect of the two main phenomena occurring at that frequency for a given position: the blade passing in front of the tongue and the wakes of the blades.


Author(s):  
Meera Day Towler ◽  
Tim Allison ◽  
Paul Krueger ◽  
Karl Wygant

This investigation studies fast-response pressure measurements as an indicator of the onset of surge in a single-stage centrifugal compressor. The objective is to determine an online monitoring approach for surge control that does not rely on surge margin relative to maps from predictions or factory testing. Fast-response pressure transducers are installed in the suction piping, inducer, diffuser, and discharge piping. A speed line is mapped, and high-speed pressure data are collected across the compressor map. The compressor is driven into surge several times to collect pressure data between during surge and between surge events. Following testing, these data are post-processed via filtration and statistical analyses. It is determined that, when taken together, the mean and range of the standard deviation of the time signal for multiple time steps can be used to determine whether the compressor’s operating point is approaching surge for the conditions tested.


Author(s):  
R. Amirante ◽  
L. A. Catalano ◽  
A. Dadone ◽  
V. Lombardo

The aim of this paper is to investigate the use of fast-response pressure transducers for measuring the instantaneous pressure in different sections of a common-rail diesel injection system, both for a single injection and for multiple injections. The influence of the pressure transducer onto the measured pressure is evaluated numerically by comparing the pressure history computed without the pressure transducer and that computed with the presence, and thus with the disturbance, of this sensor. A new electric circuit is proposed in substitution of the standard electronic central unit, which allows to modify the injection parameters and to perform injections on a test rig, as done in the automotive applications. Experimental results are provided both for a single injection and for multiple injections, to demonstrate the capabilities of the proposed test bench for the unijet injectors.


Author(s):  
R. F. White ◽  
D. F. D'Arcy

The effects of a rapid loss of coolant caused, for example, by the fracture of a pipe in the primary coolant circuit play an important part in the safety assessment of a water-cooled nuclear reactor. In particular, it is essential to know the rate of decrease of coolant density in the core and the rate of discharge of coolant into the containment space. It is uneconomic to obtain this information from experiments on each new reactor. Consequently computational methods, supported by experiments on basic elements of a coolant circuit, are being developed which will be applicable to a wide variety of reactors. An experiment is described in which fundamental information on fluid flow dynamics was obtained. In the experiment, a flow of two-phase water at high pressure was established in a straight pipe 15 ft long and 0–621 in i.d. At the downstream end of the pipe a rupture disc was suddenly burst. The pressure versus time histories at three locations along the pipe were recorded, using fast response pressure transducers and a multichannel oscilloscope. Experimental results are given for pre-blowdown pressures of 500 and 1000 lb/in2 (abs.) and steam qualities of 10–30 per cent. The mass flux was 0·6 times 106 lb/ft2 h, and the flow regime was annular. From the recorded pressure traces, the speed of the head of the rarefaction wave travelling upstream into the fluid was measured and also the pressure at critical flow conditions as functions of the pre-blowdown conditions. These measurements are compared with values calculated from steam tables.


1996 ◽  
Vol 118 (1) ◽  
pp. 41-51 ◽  
Author(s):  
M. Ubaldi ◽  
P. Zunino ◽  
G. Barigozzi ◽  
A. Cattanei

Detailed flow measurements were taken in a centrifugal turbomachine model to investigate the aerodynamic influence of the vaned diffuser on the impeller flow. The model consists of an unshrouded centrifugal impeller with backswept blades and a rotatable vaned diffuser, which enables a continuous variation of the vaned diffuser location with respect to the measuring points. Phase-locked ensemble-averaged velocity components have been measured with hot-wire probes at the impeller outlet for 30 different relative positions of the probe with respect to the diffuser vanes. The data also include the distribution of the ensemble-averaged static pressure at the impeller front end, taken by means of miniature fast response pressure transducers flush-mounted at the impeller stationary casing. By circumferentially averaging the results obtained for the different circumferential probe locations, the periodically perturbed impeller flow has been split into a relative steady flow and a stator-generated unsteadiness. The results for the different probe positions have also been correlated in time to obtain instantaneous flow field images in the relative frame, which provide information on the various aspects of the diffuser vane upstream influence on the relative flow leaving the impeller.


Sign in / Sign up

Export Citation Format

Share Document