Mismatch between the Optimal Ages for Gross Primary Production and Net Ecosystem Production in Norway Spruce Forests

2021 ◽  
Author(s):  
Junbin Zhao ◽  
Holger Lange ◽  
Helge Meissner
2021 ◽  
Author(s):  
Junbin Zhao ◽  
Holger Lange ◽  
Helge Meissner

<p>Forests have climate change mitigation potential since they sequester carbon. However, their carbon sink strength might depend on management. As a result of the balance between CO<sub>2</sub> uptake and emission, forest net ecosystem exchange (NEE) reaches optimal values (maximum sink strength) at young stand ages, followed by a gradual NEE decline over many years. Traditionally, this peak of NEE is believed to be concurrent with the peak of primary production (e.g., gross primary production, GPP); however, in theory, this concurrence may potentially vary depending on tree species, site conditions and the patterns of ecosystem respiration (R<sub>eco</sub>). In this study, we used eddy-covariance (EC)-based CO<sub>2</sub> flux measurements from 8 forest sites that are dominated by Norway spruce (Picea abies L.) and built machine learning models to find the optimal age of ecosystem productivity and that of CO<sub>2</sub> sequestration. We found that the net CO<sub>2</sub> uptake of Norway spruce forests peaked at ages of 30-40 yrs. Surprisingly, this NEE peak did not overlap with the peak of GPP, which appeared later at ages of 60-90 yrs. The mismatch between NEE and GPP was a result of the R<sub>eco</sub> increase that lagged behind the GPP increase associated with the tree growth at early age. Moreover, we also found that newly planted Norway spruce stands had a high probability (up to 90%) of being a C source in the first year, while, at an age as young as 5 yrs, they were likely to be a sink already. Further, using common climate change scenarios, our model results suggest that net CO<sub>2</sub> uptake of Norway spruce forests will increase under the future climate with young stands in the high latitude areas being more beneficial. Overall, the results suggest that forest management practices should consider NEE and forest productivity separately and harvests should be performed only after the optimal ages of both the CO<sub>2</sub> sequestration and productivity to gain full ecological and economic benefits.</p>


2006 ◽  
Vol 63 (5) ◽  
pp. 1130-1141 ◽  
Author(s):  
George H Lauster ◽  
Paul C Hanson ◽  
Timothy K Kratz

Net ecosystem production (NEP) trends among lakes have been ascribed to differences in nutrient and allochthonous carbon inputs, but little is known on how different habitats within lakes contribute to these trends. We sampled pelagic and littoral surface waters using sonde (i.e., free-water) and bottle methods concurrently in lakes spanning a range of trophic conditions. We considered whether the typically higher metabolism estimates found with sonde methods are due to contributions from littoral habitats not reflected by bottle estimates. We sought the source of littoral contributions by selecting sites with maximum differences in macrophyte abundance. Sonde estimates for pelagic primary production and respiration were two–three times greater than bottle estimates. Sonde/bottle ratios were higher in productive lakes and lakes with more littoral area. Bottle estimates were similar among all sites, and sonde estimates in macrophyte-poor sites were similar to pelagic sondes. However, sonde estimates in macrophyte-rich areas were four–nine times greater than bottle estimates. Results suggest littoral zones increase whole-lake NEP in eutrophic systems, whereas the Sphagnum mat surrounding dystrophic lakes decreases NEP. Non-planktonic organisms associated with macrophytes provide important littoral contributions to whole-lake metabolism and to understanding NEP trends among lakes.


2012 ◽  
Vol 118 (2) ◽  
pp. 259-273 ◽  
Author(s):  
Zhen-Ming Ge ◽  
Seppo Kellomäki ◽  
Heli Peltola ◽  
Xiao Zhou ◽  
Hannu Väisänen ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1587
Author(s):  
Imam Basuki ◽  
J. Boone Kauffman ◽  
James T. Peterson ◽  
Gusti Z. Anshari ◽  
Daniel Murdiyarso

Deforested and converted tropical peat swamp forests are susceptible to fires and are a major source of greenhouse gas (GHG) emissions. However, information on the influence of land-use change (LUC) on the carbon dynamics in these disturbed peat forests is limited. This study aimed to quantify soil respiration (heterotrophic and autotrophic), net primary production (NPP), and net ecosystem production (NEP) in peat swamp forests, partially logged forests, early seral grasslands (deforested peat), and smallholder-oil palm estates (converted peat). Peat swamp forests (PSF) showed similar soil respiration with logged forests (LPSF) and oil palm (OP) estates (37.7 Mg CO2 ha−1 yr−1, 40.7 Mg CO2 ha−1 yr−1, and 38.7 Mg CO2 ha−1 yr−1, respectively), but higher than early seral (ES) grassland sites (30.7 Mg CO2 ha−1 yr−1). NPP of intact peat forests (13.2 Mg C ha−1 yr−1) was significantly greater than LPSF (11.1 Mg C ha−1 yr−1), ES (10.8 Mg C ha−1 yr−1), and OP (3.7 Mg C ha−1 yr−1). Peat swamp forests and seral grasslands were net carbon sinks (10.8 Mg CO2 ha−1 yr−1 and 9.1 CO2 ha−1 yr−1, respectively). In contrast, logged forests and oil palm estates were net carbon sources; they had negative mean Net Ecosystem Production (NEP) values (−0.1 Mg CO2 ha−1 yr−1 and −25.1 Mg CO2 ha−1 yr−1, respectively). The shift from carbon sinks to sources associated with land-use change was principally due to a decreased Net Primary Production (NPP) rather than increased soil respiration. Conservation of the remaining peat swamp forests and rehabilitation of deforested peatlands are crucial in GHG emission reduction programs.


2011 ◽  
Vol 159 (5) ◽  
pp. 1024-1034 ◽  
Author(s):  
Miloš Zapletal ◽  
Pavel Cudlín ◽  
Petr Chroust ◽  
Otmar Urban ◽  
Radek Pokorný ◽  
...  

2003 ◽  
Vol 33 (12) ◽  
pp. 2340-2351 ◽  
Author(s):  
Zhong Li ◽  
Michael J Apps ◽  
Werner A Kurz ◽  
Ed Banfield

Temporal variations of net primary production (NPP) and net ecosystem production (NEP) in west central Canadian forests over the period of 1920–1995 and their responses to natural and anthropogenic disturbances were simulated using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS2). The results show that forest NPP in the region was 215 g C·year–1·m–2 in 1920, varied between 105 and 317 g·C year–1·m–2 depending on ecoclimatic province, but gradually increased to 330 (158 to 395) g C·year–1·m–2 in the early 1980s before declining to 290 (148 to 395) g C·year–1·m–2 by 1995. Forest NEP was estimated to be 53 (–13 to 88) g C·year–1·m–2 in 1920–1924, increased to 75 (5 to 98) g C·year–1·m–2 in 1960, and then declined to 26 (–14 to 53) g C·year–1·m–2 in 1991–1995. Natural disturbances played a greater role than harvest in determining the temporal pattern of forest NPP and NEP during the period because of the larger area affected by natural disturbances. This study also indicated that ignoring disturbances would lead to an overestimation of forest NPP and NEP in ecosystem modeling.


2018 ◽  
Vol 64 (No. 8) ◽  
pp. 353-360 ◽  
Author(s):  
Lamptey Shirley ◽  
Li Lingling ◽  
Xie Junhong

Agriculture in the semi-arid is often challenged by overuse of nitrogen (N), inadequate soil water and heavy carbon emissions thereby threatening sustainability. Field experiments were conducted to investigate the effect of nitrogen fertilization levels (N<sub>0</sub> – 0, N<sub>100</sub> – 100, N<sub>200</sub> – 200, N<sub>300</sub> – 300 kg N/ha) on soil water dynamics, soil respiration (Rs), net ecosystem production (NEP), and biomass yields. Zero nitrogen soils decreased Rs by 23% and 16% compared to N<sub>300</sub> and N<sub>200</sub> soils, respectively. However, biomass yield was greatest under N<sub>300</sub> compared with N<sub>0</sub>, which therefore translated into increased net primary production by 89% and NEP by 101% compared to N<sub>0</sub>. To a lesser extent, N<sub>200</sub> increased net primary production by 69% and net ecosystem production by 79% compared to N<sub>0</sub>. Grain yields were greatest under N<sub>300</sub> compared with N<sub>100</sub> and N<sub>0</sub>, which therefore translated into increased carbon emission efficiency (CEE) by 53, 39 and 3% under N<sub>300</sub> compared to N<sub>0</sub>, N<sub>100</sub> and N<sub>200</sub> treatments, respectively. There appears potential for 200 kg N/ha to be used to improve yield and increase CEE.


2018 ◽  
Vol 11 (6) ◽  
pp. 743-750 ◽  
Author(s):  
S Jurán ◽  
M Edwards-Jonášová ◽  
P Cudlín ◽  
M Zapletal ◽  
L Šigut ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document