Impacts of Different Water Management Technologies on Water Productivity, Partial Nutrient Balance and Yield of Bread Wheat at Koga Irrigation Scheme

2022 ◽  
Author(s):  
Alebachew Enyew
2011 ◽  
Vol 47 (S1) ◽  
pp. 39-55 ◽  
Author(s):  
SISAY DEMEKU DERIB ◽  
KATRIEN DESCHEEMAEKER ◽  
AMARE HAILESLASSIE ◽  
TILAHUN AMEDE

SUMMARYIn Ethiopia, irrigation is mainly implemented in small-scale irrigation schemes, which are often characterized by low water productivity. This study reports on the efficiency and productivity of a typical small-scale irrigation scheme in the highlands of the Blue Nile, Ethiopia. Canal water flows and the volume of irrigation water applied were measured at field level. Grain and crop residue biomass and grass biomass production along the canals were also measured. To triangulate the measurements, the irrigation farm management, effects of water logging around irrigation canals, farm water distribution mechanisms, effects of night irrigation and water losses due to soil cracking created by prolonged irrigation were closely observed. The average canal water loss from the main, the secondary and the field canals was 2.58, 1.59 and 0.39 l s−1 100 m−1, representing 4.5, 4.0 and 26% of the total water flow respectively. About 0.05% of the loss was attributed to grass production for livestock, while the rest was lost through evaporation and canal seepage. Grass production for livestock feed had a land productivity of 6190.5 kg ha−1 and a water productivity of 0.82 kg m−3. Land productivity for straw and grain was 2048 and 770 kg ha−1, respectively, for teff, and 1864 kg ha−1 and 758 kg ha−1, respectively, for wheat. Water productivities of the crops varied from 0.2 to 1.63 kg m−3. A significant volume of water was lost from small-scale irrigation systems mainly because farmers' water application did not match crop needs. The high price incurred by pumped irrigation positively affected water management by minimizing water losses and forced farmers to use deficit irrigation. Improving water productivity of small-scale irrigation requires integrated interventions including night storage mechanisms, optimal irrigation scheduling, empowerment of farmers to maintain canals and proper irrigation schedules.


2013 ◽  
Vol 66 ◽  
pp. 139-147 ◽  
Author(s):  
Rashirayi Tambudzai ◽  
Mapedza Everisto ◽  
Zhou Gideon

2020 ◽  
Vol 69 (S1) ◽  
pp. 23-37
Author(s):  
Solomon Habtu ◽  
Teklu Erkossa ◽  
Jochen Froebrich ◽  
Filmon Tquabo ◽  
Degol Fissehaye ◽  
...  

2016 ◽  
Vol 163 ◽  
pp. 319-331 ◽  
Author(s):  
Kaiming Liang ◽  
Xuhua Zhong ◽  
Nongrong Huang ◽  
Rubenito M. Lampayan ◽  
Junfeng Pan ◽  
...  

2017 ◽  
Vol 9 (2) ◽  
pp. 79-84 ◽  
Author(s):  
SC Barman ◽  
MA Ali ◽  
HJ Hiya ◽  
KR Sarker ◽  
MA Sattar

A field experiment was carried out during the Boro season 2013 to find out the effects of water management practices on rice yield performance and water productivity index at Old Brahmaputra flood plain paddy land, Muktagacha, Mymensingh. The experiment was laid out in randomized complete block design (RCBD) with six (6) irrigation treatments. Two treatments, T1 and T3 were kept under continuous standing water levels (10 cm and 5 cm respectively) while in treatment T5 irrigation water was supplied for 1st 3 weeks then followed mid season drain out and re-flooded at flowering stage. Three alternate wetting and drying irrigation treatments, T2, T4 and T6 were selected in which irrigation water was applied when water level dropped 20cm, 10cm and 15cm below ground level, respectively. All the irrigation treatments significantly affected the rice yield and yield contributing parameters. The study revealed that the highest grain yield (5950 kg ha-1) was found in treatment T5 which was identical with AWDI treatment T4 (5820 kg ha-1) followed by AWDI treatment T6 (5460 kg ha-1). On the contrary, rice yield of 3350 kg ha-1, 4470 kg ha-1 and 4810 kg ha-1 were found in the treatment T1, T2 and T3, respectively. It was found that AWDI treatment T2 showed maximum water savings (15.1%) followed by T6 (11.3%), T4 (7.59%) and T5 (3.8%), however rice yield in the treatment T2 (4470 kg ha-1) was significantly lower compared to T6, T4 and T5 treatment. Therefore, it may be inferred that treatment T4 (AWDI; irrigation when water level fell 10 cm from ground level), T5 (Irrigation for 1st 3 weeks, then mid-season drain out and re-flooding at flowering) and T6 (AWDI; irrigation when water level fell 15cm from ground level) would be the feasible choice for the water savings, higher rice yield as well as maximum water productivity index (0.478, 0.472 and 0.467, respectively) for sustaining rice farming during the dry Boro season in Bangladesh.J. Environ. Sci. & Natural Resources, 9(2): 79-84 2016


Sign in / Sign up

Export Citation Format

Share Document