Low neoantigen expression and poor T cell priming underlie early immune escape in colorectal cancer

immuneACCESS ◽  
2021 ◽  
Author(s):  
PMK Westcott ◽  
NJ Sacks ◽  
JM Schenkel ◽  
ZA Ely ◽  
O Smith ◽  
...  
Nature Cancer ◽  
2021 ◽  
Author(s):  
Peter M. K. Westcott ◽  
Nathan J. Sacks ◽  
Jason M. Schenkel ◽  
Zackery A. Ely ◽  
Olivia Smith ◽  
...  

2021 ◽  
Vol 9 (7) ◽  
pp. e002844
Author(s):  
Alexander Stein ◽  
Donjete Simnica ◽  
Christoph Schultheiß ◽  
Rebekka Scholz ◽  
Joseph Tintelnot ◽  
...  

BackgroundIn patients with microsatellite stable (MSS) metastatic colorectal cancer (mCRC), immune checkpoint blockade is ineffective, and combinatorial approaches enhancing immunogenicity need exploration.MethodsWe treated 43 patients with predominantly microsatellite stable RAS/BRAF wild-type mCRC on a phase II trial combining chemotherapy with the epidermal growth factor receptor antibody cetuximab and the programmed cell death ligand 1 (PD-L1) antibody avelumab. We performed next-generation gene panel sequencing for mutational typing of tumors and liquid biopsy monitoring as well as digital droplet PCR to confirm individual mutations. Translational analyses included tissue immunohistochemistry, multispectral imaging and repertoire sequencing of tumor-infiltrating T cells. Detected PD-L1 mutations were mechanistically validated in CRISPR/Cas9-generated cell models using qRT-PCR, immunoblotting, flow cytometry, complement-dependent cytotoxicity assay, antibody-dependent cytotoxicity by natural killer cell degranulation assay and LDH release assay as well as live cell imaging of T cell mediated tumor cell killing.ResultsCirculating tumor DNA showed rapid clearance in the majority of patients mirroring a high rate of early tumor shrinkage. In 3 of 13 patients expressing the high-affinity Fcγ receptor 3a (FcγR3a), tumor subclones with PD-L1 mutations were selected that led to loss of tumor PD-L1 by nonsense-mediated RNA decay in PD-L1 K162fs and protein degradation in PD-L1 L88S. As a consequence, avelumab binding and antibody-dependent cytotoxicity were impaired, while T cell killing of these variant clones was increased. Interestingly, PD-L1 mutant subclones showed slow selection dynamics reversing on avelumab withdrawal and patients with such subclones had above-average treatment benefit. This suggested that the PD-L1 mutations mediated resistance to direct antitumor effects of avelumab, while at the same time loss of PD-L1 reduced biological fitness by enhanced T cell killing limiting subclonal expansion.ConclusionThe addition of avelumab to standard treatment appeared feasible and safe. PD-L1 mutations mediate subclonal immune escape to avelumab in some patients with mCRC expressing high-affinity FcγR3a, which may be a subset experiencing most selective pressure. Future trials evaluating the addition of avelumab to standard treatment in MSS mCRC are warranted especially in this patient subpopulation.Trial registration numberNCT03174405.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jiayu Wang ◽  
Hongya Wu ◽  
Yanjun Chen ◽  
Jinghan Zhu ◽  
Linqing Sun ◽  
...  

AbstractNegative immune checkpoint blockade immunotherapy has shown potential for multiple malignancies including colorectal cancer (CRC). B7-H5, a novel negative immune checkpoint regulator, is highly expressed in tumor tissues and promotes tumor immune escape. However, the clinical significance of B7-H5 expression in CRC and the role of B7-H5 in the tumor microenvironment (TME) has not been fully clarified. In this study, we observed that high B7-H5 expression in CRC tissues was significantly correlated with the lymph node involvement, AJCC stage, and survival of CRC patients. A significant inverse correlation was also observed between B7-H5 expression and CD8+ T-cell infiltration in CRC tissues. Kaplan−Meier analysis showed that patients with high B7-H5 expression and low CD8+ T-cell infiltration had the worst prognosis in our cohort of CRC patients. Remarkably, both high B7-H5 expression and low CD8+ T infiltration were risk factors for overall survival. Additionally, B7-H5 blockade using a B7-H5 monoclonal antibody (B7-H5 mAb) effectively suppressed the growth of MC38 colon cancer tumors by enhancing the infiltration and Granzyme B production of CD8+ T cells. Importantly, the depletion of CD8+ T cells obviously abolished the antitumor effect of B7-H5 blockade in the MC38 tumors. In sum, our findings suggest that B7-H5 may be a valuably prognostic marker for CRC and a potential target for CRC immunotherapy.


2020 ◽  
Author(s):  
Peter Westcott ◽  
Nathan Sacks ◽  
Jason Schenkel ◽  
Olivia Smith ◽  
Daniel Zhang ◽  
...  

Abstract Immune evasion is a hallmark of cancer, and therapies that restore immune surveillance have proven highly effective in cancers with high tumor mutation burden (TMB) (e.g. microsatellite instable (MSI) colorectal cancer (CRC)). Whether low TMB cancers, which are largely refractory to immunotherapy, harbor T cell neoantigens capable of engaging adaptive immunity remains unclear. Here, we show that the majority of microsatellite stable (MSS) CRC harbors predicted high-affinity neoantigens despite low TMB. Unexpectedly, these neoantigens are broadly expressed at lower levels relative to those in MSI CRC, suggesting a potential role of antigen expression in tumor immune surveillance. To test this, we developed a versatile platform for functional interrogation of neoantigens with variable expression and applied it to novel preclinical colonoscopy-guided mouse models of CRC. While high expression of multiple high-affinity MHC-I-restricted neoantigens universally resulted in tumor rejection, low expression resulted in poor T cell priming and tumor progression. Strikingly, experimental or therapeutic rescue of priming rendered T cells fully capable of controlling tumors with low neoantigen expression. These findings underscore a critical role of neoantigen expression levels in immune evasion and suggest that poor expression or presentation may be a general feature of neoantigens acquired early in tumorigenesis. Finally, poorly expressed neoantigens, commonly excluded in tumor vaccine pipelines, may hold untapped therapeutic potential.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qi Shao ◽  
Lei Wang ◽  
Maoling Yuan ◽  
Xiaohong Jin ◽  
Zhiming Chen ◽  
...  

T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) is an immunosuppressive receptor expressed on the surface of immune cells, suppressing immune responses by activating the intracellular negative regulatory signals. TIGIT plays an important role in the pathogenesis of various tumors, but its immune escape in colorectal cancer remains unclear. We found that the proportion of CD3+TIGIT+ T cells was increased in peripheral blood and cancer tissue in colorectal cancer patients when compared with the healthy donors. These cells exhibited functional defects, low proliferative activity, impaired cytokine production and reduced glucose metabolism. A strong association was also observed between the elevated TIGIT expression and poor prognosis in this cohort. In the in vitro co-culture assays of T cells and tumor cells, the suppressed glucose metabolic activity of T cells was reversed by TIGIT blockade. In addition, this blockade induced the apoptosis and reduced G2/M transit in tumor cells. The antitumor efficacy of TIGIT Ab therapy was further demonstrated in a human colorectal xenograft mice model while co-blockers of TIGIT and PD-1 exhibited synergistic suppressing effects on tumor growth. These results suggest that while TIGIT induces CD3+ T cell dysfunction in colorectal cancer, co-targeting TIGIT and PD-1 can lead to an effective antitumor response and may serve as a novel therapeutic strategy for colorectal patients.


2020 ◽  
Vol 117 (45) ◽  
pp. 28239-28250
Author(s):  
Xiao Albert Zhou ◽  
Jiadong Zhou ◽  
Long Zhao ◽  
Guihui Yu ◽  
Jun Zhan ◽  
...  

Aberrant programmed cell death protein 1 (PD-1) expression on the surface of T cells is known to inhibit T cell effector activity and to play a pivotal role in tumor immune escape; thus, maintaining an appropriate level of PD-1 expression is of great significance. We identified KLHL22, an adaptor of the Cul3-based E3 ligase, as a major PD-1–associated protein that mediates the degradation of PD-1 before its transport to the cell surface. KLHL22 deficiency leads to overaccumulation of PD-1, which represses the antitumor response of T cells and promotes tumor progression. Importantly, KLHL22 was markedly decreased in tumor-infiltrating T cells from colorectal cancer patients. Meanwhile, treatment with 5-fluorouracil (5-FU) could increase PD-1 expression by inhibiting the transcription of KLHL22. These findings reveal that KLHL22 plays a crucial role in preventing excessive T cell suppression by maintaining PD-1 expression homeostasis and suggest the therapeutic potential of 5-FU in combination with anti–PD-1 in colorectal cancer patients.


2005 ◽  
Vol 128 (7) ◽  
pp. 1796-1804 ◽  
Author(s):  
Veronica Huber ◽  
Stefano Fais ◽  
Manuela Iero ◽  
Luana Lugini ◽  
Paola Canese ◽  
...  

2016 ◽  
Vol 54 (12) ◽  
pp. 1343-1404
Author(s):  
V Duhan ◽  
V Khairnar ◽  
SK Friedrich ◽  
C Hardt ◽  
PA Lang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document