On an Integral Equation for Discounted Compound – Annuity Distributions

1989 ◽  
Vol 19 (2) ◽  
pp. 191-198 ◽  
Author(s):  
Colin M. Ramsay

AbstractWe consider a risk generating claims for a period of N consecutive years (after which it expires), N being an integer valued random variable. Let Xk denote the total claims generated in the kth year, k ≥ 1. The Xk's are assumed to be independent and identically distributed random variables, and are paid at the end of the year. The aggregate discounted claims generated by the risk until it expires is defined as where υ is the discount factor. An integral equation similar to that given by Panjer (1981) is developed for the pdf of SN(υ). This is accomplished by assuming that N belongs to a new class of discrete distributions called annuity distributions. The probabilities in annuity distributions satisfy the following recursion:where an is the present value of an n-year immediate annuity.

1996 ◽  
Vol 12 (2) ◽  
pp. 257-283 ◽  
Author(s):  
Miguel A. Arcones

We consider the following linear regression model:whereare independent and identically distributed random variables, Yi, is real, Zihas values in Rm, Ui, is independent of Zi, and θ0is anm-dimensional parameter to be estimated. TheLpestimator of θ0is the value 6n such thatHere, we will give the exact Bahadur-Kiefer representation of θn, for each p ≥ 1. Explicitly, we will see that, under regularity conditions,whereandcis a positive constant, which depends onpand on the random variableX.


Author(s):  
Walter L. Smith

SynopsisA sequence of non-negative random variables {Xi} is called a renewal process, and if the Xi may only take values on some sequence it is termed a discrete renewal process. The greatest k such that X1 + X2 + … + Xk ≤ x(> o) is a random variable N(x) and theorems concerning N(x) are renewal theorems. This paper is concerned with the proofs of a number of renewal theorems, the main emphasis being on processes which are not discrete. It is assumed throughout that the {Xi} are independent and identically distributed.If H(x) = Ɛ{N(x)} and K(x) is the distribution function of any non-negative random variable with mean K > o, then it is shown that for the non-discrete processwhere Ɛ{Xi} need not be finite; a similar result is proved for the discrete process. This general renewal theorem leads to a number of new results concerning the non-discrete process, including a discussion of the stationary “age-distribution” of “renewals” and a discussion of the variance of N(x). Lastly, conditions are established under whichThese new conditions are much weaker than those of previous theorems by Feller, Täcklind, and Cox and Smith.


1970 ◽  
Vol 13 (1) ◽  
pp. 151-152 ◽  
Author(s):  
J. C. Ahuja

Let X1, X2, …, Xn be n independent and identically distributed random variables having the positive binomial probability function1where 0 < p < 1, and T = {1, 2, …, N}. Define their sum as Y=X1 + X2 + … +Xn. The distribution of the random variable Y has been obtained by Malik [2] using the inversion formula for characteristic functions. It appears that his result needs some correction. The purpose of this note is to give an alternative derivation of the distribution of Y by applying one of the results, established by Patil [3], for the generalized power series distribution.


1971 ◽  
Vol 8 (02) ◽  
pp. 269-275 ◽  
Author(s):  
W. J. Padgett ◽  
C. P. Tsokos

In mathematical models of phenomena occurring in the general areas of the engineering, biological, and physical sciences, random or stochastic equations appear frequently. In this paper we shall formulate a problem in telephone traffic theory which leads to a stochastic integral equation which is a special case of the Volterra type of the form where: (i) ω∊Ω, where Ω is the supporting set of the probability measure space (Ω,B,P); (ii) x(t; ω) is the unknown random variable for t ∊ R +, where R + = [0, ∞); (iii) y(t; ω) is the stochastic free term or free random variable for t ∊ R +; (iv) k(t, τ; ω) is the stochastic kernel, defined for 0 ≦ τ ≦ t &lt; ∞; and (v) f(t, x) is a scalar function defined for t ∊ R + and x ∊ R, where R is the real line.


1967 ◽  
Vol 4 (03) ◽  
pp. 605-608
Author(s):  
Meyer Dwass

Let Y1, Y 2, … be a sequence of independent and identically distributed Poisson random variables with parameter λ. Let Sn = Y 1 + … + Yn, n = 1,2,…, S 0 = 0. The event Sn = n is a recurrent event in the sense that successive waiting times between recurrences form a sequence of independent and identically distributed random variables. Specifically, the waiting time probabilities are (Alternately, the fn can be described as the probabilities for first return to the origin of the random walk whose successive steps are Y1 − 1, Y2 − 1, ….)


1968 ◽  
Vol 64 (2) ◽  
pp. 485-488 ◽  
Author(s):  
V. K. Rohatgi

Let {Xn: n ≥ 1} be a sequence of independent random variables and write Suppose that the random vairables Xn are uniformly bounded by a random variable X in the sense thatSet qn(x) = Pr(|Xn| > x) and q(x) = Pr(|Xn| > x). If qn ≤ q and E|X|r < ∞ with 0 < r < 2 then we have (see Loève(4), 242)where ak = 0, if 0 < r < 1, and = EXk if 1 ≤ r < 2 and ‘a.s.’ stands for almost sure convergence. the purpose of this paper is to study the rates of convergence ofto zero for arbitrary ε > 0. We shall extend to the present context, results of (3) where the case of identically distributed random variables was treated. The techniques used here are strongly related to those of (3).


Author(s):  
J. M. Hammersley

Let G be an infinite partially directed graph of finite outgoing degree. Thus G consists of an infinite set of vertices, together with a set of edges between certain prescribed pairs of vertices. Each edge may be directed or undirected, and the number of edges from (but not necessarily to) any given vertex is always finite (though possibly unbounded). A path on G from a vertex V1 to a vertex Vn (if such a path exists) is a finite sequence of alternate edges and vertices of the form E12, V2, E23, V3, …, En − 1, n, Vn such that Ei, i + 1 is an edge connecting Vi and Vi + 1 (and in the direction from Vi to Vi + 1 if that edge happens to be directed). In mixed Bernoulli percolation, each vertex Vi carries a random variable di, and each edge Eij carries a random variable dij. All these random variables di and dij are mutually independent, and take only the values 0 or 1; the di take the value 1 with probability p, while the dij take the value 1 with probability p. A path is said to be open if and only if all the random variables carried by all its edges and all its vertices assume the value 1. Let S be a given finite set of vertices, called the source set; and let T be the set of all vertices such that there exists at least one open path from some vertex of S to each vertex of T. (We imagine that fluid, supplied to all the source vertices, can flow along any open path; and thus T is the random set of vertices eventually wetted by the fluid). The percolation probabilityis defined to be the probability that T is an infinite set.


1999 ◽  
Vol 31 (1) ◽  
pp. 178-198 ◽  
Author(s):  
Frans A. Boshuizen ◽  
Robert P. Kertz

In this paper, in work strongly related with that of Coffman et al. [5], Bruss and Robertson [2], and Rhee and Talagrand [15], we focus our interest on an asymptotic distributional comparison between numbers of ‘smallest’ i.i.d. random variables selected by either on-line or off-line policies. Let X1,X2,… be a sequence of i.i.d. random variables with distribution function F(x), and let X1,n,…,Xn,n be the sequence of order statistics of X1,…,Xn. For a sequence (cn)n≥1 of positive constants, the smallest fit off-line counting random variable is defined by Ne(cn) := max {j ≤ n : X1,n + … + Xj,n ≤ cn}. The asymptotic joint distributional comparison is given between the off-line count Ne(cn) and on-line counts Nnτ for ‘good’ sequential (on-line) policies τ satisfying the sum constraint ∑j≥1XτjI(τj≤n) ≤ cn. Specifically, for such policies τ, under appropriate conditions on the distribution function F(x) and the constants (cn)n≥1, we find sequences of positive constants (Bn)n≥1, (Δn)n≥1 and (Δ'n)n≥1 such that for some non-degenerate random variables W and W'. The major tools used in the paper are convergence of point processes to Poisson random measure and continuous mapping theorems, strong approximation results of the normalized empirical process by Brownian bridges, and some renewal theory.


1999 ◽  
Vol 36 (1) ◽  
pp. 132-138
Author(s):  
M. P. Quine ◽  
W. Szczotka

We define a stochastic process {Xn} based on partial sums of a sequence of integer-valued random variables (K0,K1,…). The process can be represented as an urn model, which is a natural generalization of a gambling model used in the first published exposition of the criticality theorem of the classical branching process. A special case of the process is also of interest in the context of a self-annihilating branching process. Our main result is that when (K1,K2,…) are independent and identically distributed, with mean a ∊ (1,∞), there exist constants {cn} with cn+1/cn → a as n → ∞ such that Xn/cn converges almost surely to a finite random variable which is positive on the event {Xn ↛ 0}. The result is extended to the case of exchangeable summands.


1983 ◽  
Vol 15 (3) ◽  
pp. 585-600 ◽  
Author(s):  
A. D. Barbour ◽  
G. K. Eagleson

Stein's (1970) method of proving limit theorems for sums of dependent random variables is used to derive Poisson approximations for a class of statistics, constructed from finitely exchangeable random variables.Let be exchangeable random elements of a space and, for I a k-subset of , let XI be a 0–1 function. The statistics studied here are of the form where N is some collection of k -subsets of .An estimate of the total variation distance between the distributions of W and an appropriate Poisson random variable is derived and is used to give conditions sufficient for W to be asymptotically Poisson. Two applications of these results are presented.


Sign in / Sign up

Export Citation Format

Share Document