scholarly journals Isolation of pcDNAI-Based Mammalian Expression Vectors from Escherichia coli Strain MC1061/P3

BioTechniques ◽  
1999 ◽  
Vol 26 (3) ◽  
pp. 402-406
Author(s):  
Barbara Criscuolo Waldman
2003 ◽  
Vol 71 (9) ◽  
pp. 5364-5370 ◽  
Author(s):  
Bao Quan Sui ◽  
Pinaki R. Dutta ◽  
James P. Nataro

ABSTRACT The plasmid-encoded toxin (Pet) from enteroaggregative Escherichia coli is a serine protease autotransporter that acts as an enterotoxin and cytotoxin. When applied to epithelial cells in culture, purified toxin induces cell elongation and rounding, followed by exfoliation of cells from the substratum. These effects are accompanied by loss of actin stress fibers and electrophysiologic changes. Although it has been hypothesized that Pet has an intracellular site of action, evidence for this is indirect. In addition, Pet has recently been shown to cleave spectrin in vitro and in vivo. If Pet requires intracellular localization to execute its toxic effects, then intracellular expression of the protein could induce cytopathic effects similar to those observed when the toxin is applied to the cell surface. To test this hypothesis, we expressed the mature Pet toxin (comprising only the passenger domain of the Pet precursor) in the cytoplasm of HEp-2 cells by using mammalian expression vectors. Separately, we expressed the Pet passenger domain mutated at the catalytic serine (PetS260A), a construct that has been reported to lack toxic effects. Forty-eight hours after transient transfection of pcDNA3.1-pet in HEp-2 cells, we observed cell elongation and other morphological changes similar to those induced by applied toxin. Cells transfected with pcDNA3.1 vector alone appeared normal, while cells expressing the PetS260A mutant displayed similar (though less pronounced) changes compared with those in cells expressing pcDNA3.1-pet. Notably, intracellular expression of Pet was accompanied by condensation of the spectrin cytoskeleton. These studies corroborate an intracellular site of action for the Pet toxin, further implicate a role for spectrin in Pet intoxication, and provide a powerful tool for Pet structure and function analyses.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 549
Author(s):  
Julia Ittensohn ◽  
Jacqueline Hemberger ◽  
Hannah Griffiths ◽  
Maren Keller ◽  
Simone Albrecht ◽  
...  

The uropathogenic Escherichia coli strain CFT073 causes kidney abscesses in mice Toll/interleukin-1 receptor domain-containing protein C (TcpC) dependently and the corresponding gene is present in around 40% of E. coli isolates of pyelonephritis patients. It impairs the Toll-like receptor (TLR) signaling chain and the NACHT leucin-rich repeat PYD protein 3 inflammasome (NLRP3) by binding to TLR4 and myeloid differentiation factor 88 as well as to NLRP3 and caspase-1, respectively. Overexpression of the tcpC gene stopped replication of CFT073. Overexpression of several tcpC-truncation constructs revealed a transmembrane region, while its TIR domain induced filamentous bacteria. Based on these observations, we hypothesized that tcpC expression is presumably tightly controlled. We tested two putative promoters designated P1 and P2 located at 5′ of the gene c2397 and 5′ of the tcpC gene (c2398), respectively, which may form an operon. High pH and increasing glucose concentrations stimulated a P2 reporter construct that was considerably stronger than a P1 reporter construct, while increasing FeSO4 concentrations suppressed their activity. Human urine activated P2, demonstrating that tcpC might be induced in the urinary tract of infected patients. We conclude that P2, consisting of a 240 bp region 5′ of the tcpC gene, represents the major regulator of tcpC expression.


1989 ◽  
Vol 3 (2) ◽  
pp. 105-112 ◽  
Author(s):  
T. S. Grewal ◽  
P. J. Lowry ◽  
D. Savva

ABSTRACT A large portion of the human pro-opiomelanocortin (POMC) peptide corresponding to amino acid residues 59–241 has been cloned and expressed in Escherichia coli. A 1·0 kb DNA fragment encoding this peptide was cloned into the expression vectors pUC8 and pUR291. Plasmid pJMBG51 (a pUC8 recombinant) was found to direct the expression of a 24 kDa peptide. The recombinant pUR291 (pJMBG52) was shown to produce a β-galactosidase fusion protein of 140 kDa. Western blot analysis showed that both the 24 kDa and 140 kDa peptides are recognized by antibodies raised against POMC-derived peptides. The β-galactosidase fusion protein has been partially purified from crude E. coli cell lysates using affinity chromatography on p-aminobenzyl-1-thio-β-d-galactopyranoside agarose.


2006 ◽  
Vol 148 (2) ◽  
pp. 239-245 ◽  
Author(s):  
Hongyan An ◽  
John M Fairbrother ◽  
J.Daniel Dubreuil ◽  
Josée Harel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document