scholarly journals Brockite in wallrock metasomatites of the Safyanovskoe copper-sulphide deposit (Middle Urals)

2020 ◽  
Vol 59 (3) ◽  
pp. 35-40
Author(s):  
Elena Industrovna SOROKA ◽  
◽  
Lyubov’ Vladimirovna LEONOVA ◽  
Mikhail Egorovich PRITCHIN ◽  
◽  
...  

The relevance of the work is due to the need to study ore copper-sulphide deposits in the Urals. Purpose of the work: description of accessory brockite in metasomatites of the Safyanovskoe copper-sulphide deposit. Research methodology: the chemical composition of minerals was determined using the Jeol JSM-6390LV scanning electron microscope with an INCA Energy 450 X-Max 80 energy dispersive attachment from Oxford Instruments (Institute of Geology and Geochemistry of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg). Results and conclusions. For the first time for the Safyanovskoe copper-sulphide deposit (Middle Urals), an aqueous rare earth phosphate of calcium and thorium, brockite, has been determined; it belongs to the group of rhabdophane (Ca,Th,REE)[PO]4 ∙ _H2 O. The mineral is rare for the Urals and was described earlier in granite pegmatites of the Middle and South Urals, as well as in dikes of metaplagiogranites of the Bazhenov ophiolite complex. Brockite was found in the rocky metasomatites of the Safyanovskoe copper-sulphide deposit after crystalline lithoclastic tuff (tuffaceous sandstone) of acid composition. The main mass of the rock consists of quartz, kaolinite (sericite), carbonates (dolomite, Fe-magnesite) with rare inclusions of pyrite. Brockite is found in the dolomite-quartz matrix of the sample in intergrowths with REE-goyazite – strontium aluminophosphate. It is assumed for the Safyanovskoe copper-sulphide deposit that an alumina association with an ore mineral association and rare earth minerals, in particular, REE-alumophosphates and phosphates, will form closely at the same time as the temperature drops and the redox conditions of the mineral formation environment change.

Georesursy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 56-66
Author(s):  
Sergey G. Kovalev ◽  
Andrey V. Maslov ◽  
Sergey S. Kovalev

The article provides new data on geochemistry and mineralogy of rare-earth elements (REE) in rocks of structural-material complexes of the Bashkir megaanticlinorium, which underwent metamorphic transformations of various nature: contact metamorphism (Suran section); syn- and postgenetic contact-dislocation metamorphism (Shatak complex) and hydrothermal metamorphism (Uluelga-Kudashmanovo zone). It has been established that when a magmatic melt is exposed to sediments, the latter are enriched with REEs with the formation of rare earth minerals (monazite, allanite, xenotime et al.). The study of the chemical composition of monazites and allanites showed that all variations of oxides in the composition of the former are due to isomorphous Ce-Ca-Th substitutions in the structure of minerals, but redistribution of these elements was an independent process characteristic of each structural-material complex. The study of allanites made it possible to establish the presence of isomorphism according to the Ca↔Ce, La, Nd principle, as well as the sharp difference between the characterized minerals in the amount of MgO, Fe* and MnO from analogues from other regions, which indicates the presence of a regional component in the chemical compositions of minerals altogether, geotectonic settings of mineralization formation. The temperature regimes of mineral-forming processes with metamorphic transformations of rocks calculated from chlorite and muscovite compositions (344-450°C – Suran section, 402-470°C – Shatak complex, 390-490°C – Uluelga-Kudashmanovo zone) indicate the possibility of stable coexistence of the association monazite-allanite. It was established that when a magmatic melt on the sedimentary substrate of the frame, the lanthanides enrich the exocontact rocks with the formation of newly formed REE-mineral associations. At the same time, the processes of formation of rare-earth mineralization are largely determined by the physicochemical parameters and thermobaric conditions of the accompanying and subsequent metamorphism.


2019 ◽  
Vol 5 (12) ◽  
pp. 98-110
Author(s):  
Yu. Vasileva ◽  
Ya. Sboeva ◽  
N. Chertov ◽  
A. Zhulanov

Based on the analysis of the polymorphism of two types of microsatellite markers (ISSR and SSR), the state of gene pools of the fifteen of Siberian larch populations from three regions of the Urals: Northern, Middle and Southern was estimated. The parameters of genetic diversity were revealed, its structure was established at the intrapopulation level. To assess the uniqueness of the gene pool, we used the coefficient of genetic originality (KGO), the analysis of which revealed populations with typical and region-specific gene pools. It was established that the studied samples are generally characterized by a high level of genetic diversity. It was found that the gene pools of samples from the South Urals are characterized by the greatest specificity, the lowest values of KGO, i. e. more typical gene pools, are noted in the North Urals samples of L. sibirica, the average values of KGO are from the samples of the Middle Urals. Also, 3 unique alleles were found in the ZIL, BND, and KCH samples, in the rest, no unique markers were detected. For a comprehensive assessment of the state of the gene pools of populations, all established indicators of genetic diversity have been transferred to the scale for assessing the status of gene pools developed on the example of the studied L. sibirica populations. Based on data on genetic diversity obtained using two types of molecular markers, it was found that the gene pools of ten studied L. sibirica populations are in satisfactory condition, and five have signs of gene pool degradation. Based on the results of the study, recommendations are made on the conservation of L. sibirica genetic resources in the Urals.


LITOSFERA ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 168-183
Author(s):  
N. S. Kovalchuk ◽  
T. G. Shumilova

Research subject. The Late Paleozoic (D3–P1) black shale strata surrounding the Kara Astrobleme (Pay-Khoy) were studied. Materials and methods. The rocks were sampled radially along the profile from the edge of the astrobleme (the at the contact zone with impactites) with access to black shales that were not affected by post-impact transformations. An analysis of the mineralogical and geochemical features of the black shales surrounding the Kara astrobleme was carried out using a complex of modern research methods (Geonauka Centre for Collective Use, IG FRC Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences) in order to identify the possible mobilisation, re-deposition and concentration of ore matter under the conditions of intensive post-impact hydrothermal altering. Results and conclusions. The geochemical features of the black shale deposits altered by post-impact hydrothermal processes in the vicinity of the Kara impact structure were determined. The sharp abnormal contents of Mn, B, Zr, Sr, Ge, Cd, Hf, Se and Eu as well as the abnormal contents of Ti, Ba, Cr, Rb, Li, Ce, La, Ga, Sc, Co, Cs, Gd, Dy and W were revealed. The geochemical concentration specificity of components in different regions of the Kara astrobleme associated with the specialisation of target rocks was established. Raremetal and rare-earth minerals, sulphides and thymannite (HgSe) were diagnosed.


LITOSFERA ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 224-230
Author(s):  
V. N. Smirnov ◽  
K. S. Ivanov ◽  
T. V. Bayanova

Research subject. The article presents the results of dating two dolerite dikes differing in geochemical features from a section along the Iset river in the area of Smolinskoe settlement (the Eastern zone of the Middle Urals). Materials and methods. The dating was performed by an U-Pb ID-TIMS technique for single zircon grains using an artificial 205Pb/235U tracer in the laboratory of geochronology and isotope geochemistry of the Geological Institute of the Kola Science Centre of the Russian Academy of Sciences. The lead isotopic composition and uranium and lead concentrations were measured using a Finnigan-MAT (RPQ) seven-channel mass spectrometer in dynamic mode using a secondary electron multiplier and RPQ quadrupole in ion counting mode. Results. The dikes were dated 330 ± 3 Ma and 240 ± 2 Ma. Conclusions. The research results indicate different ages of dolerite dikes developed within the Eastern zone of the Middle Urals. The oldest of the two established age levels corresponds to the Early Carboniferous era. This fact, along with the proximity of the dolerites to the petrochemical features of the basaltoids of the Early Carboniferous Beklenischevsky volcanic complex, allows these bodies to be considered as hypabyssal comagmates of these volcanics. The youngest obtained age level – Triassic – indicates that the introduction of some dolerite dikes was associated with the final phases of the trapp formation developed rarely within the eastern outskirts of the Urals and widely further east in the foundation (pre-Jurassic basement) of the West-Siberian Plate.


2020 ◽  
Vol 9 (1) ◽  
pp. 191-202
Author(s):  
Jian Wang ◽  
Chao Zhu ◽  
Baowei Li ◽  
Zhijun Gong ◽  
Zhaolei Meng ◽  
...  

AbstractTo research the roles of rare earth minerals in denitrification via the NH3-SCR, a mixture was made by certain ratio of rare earth concentrates and rare earth tailings, then treated by microwave roasting, and acids and bases to form a denitrification catalyst. The mineral phase structure and surface morphology of the catalyst were characterized by XRD, BET, SEM and EDS. The surface properties of the catalyst were tested by TPD and XPS methods, and the denitrification activity of the catalyst was evaluated in a denitrification reactor. The results showed that the denitrification efficiency increased up to 82% with complete processing. XRD, BET, SEM, and EDS spectrum analysis stated that the treated minerals contained cerium oxides and Fe−Ce composite oxides. The surface of the modified minerals became rough and porous, the surface area increased, and the surface-active sites were exposed. The results of NH3-TPD and NO-TPD showed that the catalyst surface could gradually adsorb more NH3 and NO after each step. XPS analysis indicated that there were more Ce3+, Fe2+, and lattice oxygen in rare earth minerals catalyst after each treatment step.


2021 ◽  
Author(s):  
Yuriko Furuhata

Abstract This article examines the intertwined cultural politics of geology, mining, and archival media in the context of Japan’s development as an archipelagic empire. The first Japanese geological map (1876) was completed by American geologist Benjamin Smith Lyman, who surveyed mineral deposits in Hokkaidō, Japan’s northern island, long inhabited by the Indigenous Ainu people. Following decolonial and archipelagic thoughts, the author reads across earthly archives of geological strata and colonial archives of historical documents to elucidate the conceptual duality of archipelago as a geological formation and a geopolitical territory. In tracing this formative era of Japan’s resource extraction and settler colonialism, which precedes and informs the current rush to extract rare earth minerals necessary to maintain global digital infrastructures, this article aims to both de-Westernize the methodological orientation known as media geology and offer a prehistory of contemporary rare earth mining in the Pacific Ocean.


Check List ◽  
2016 ◽  
Vol 12 (6) ◽  
pp. 2013
Author(s):  
Andrey S. Shakhmatov

New disributional data on 14 previously unrecorded or rare species and varieties of algae belonging to Closteriaceae, Desmidiaceae, Gonatozygaceae and Peni­aceae (order Desmidiales) are presented for the Middle Urals. Closterium cornu Ehrenberg ex Ralfs, Closterium macilentum Brébisson, Closterium navicula (Brébisson) Lütkemüller, and Cosmarium crenulatum Nägeli are newly recorded to the Urals. A brief description, including measurements of cells as well as regional and global distribution, is given for each taxon.


Sign in / Sign up

Export Citation Format

Share Document