scholarly journals Numerical simulation of the thermal regime of an underground spent fuel storage facility (built-in structure variant)

Vestnik MGTU ◽  
2021 ◽  
Vol 24 (2) ◽  
pp. 228-239
Author(s):  
Pavel Vasilyevich Amosov

The results of a numerical simulation of the thermal regime of an underground facility for long-term storage of spent nuclear fuel in a built-in reinforced concrete structure are presented. Two computer models were constructed in a three-dimensional formulation in the COMSOL programme. The first model is based on the incompressible fluid approximation, while the second model is based on the "incompressible ideal gas" approximation. The mathematical basis of models: the continuity equation, Navier - Stokes equations averaged by Reynolds, the standard (k - ε) turbulence model, and the general heat transfer equation. Consideration of mixed convection conditions is implemented in the "incompressible ideal gas" approximation, where the air density is a function of temperature only. The most thermally stressful arrangement of spent fuel placement is investigated: U-Zr - defective - U-Be. The air rate is varied in the range from 21 to 0.656 m3/s. Numerical experiments were performed for up to 5 years of fuel storage. The principal difference between the non-stationary structure of the velocity fields predicted in the "incompressible ideal gas" model and the "frozen" picture of the aerodynamic parameters in the incompressible fluid model is emphasized. It is shown that the requirements for exceeding the temperature limit values are met when the object operates under conservative ventilation conditions (rate 0.656 m3/s) with a minimum of costs for organizing ventilation. The dynamics of heat flows directed into the rock mass through the base and from the surface of the built-in structure of the U-Zr fuel compartment to the air environment are analyzed. The predominance of the heat flow from the surface of the structure and the different times when the curves of the heat flow dynamics reach their maximum values are noted. The heat flow to the array reaches its maximum significantly faster than to the air.

2017 ◽  
Vol 67 (1) ◽  
pp. 87-92
Author(s):  
Juraj Paulech ◽  
Vladimír Kutiš ◽  
Gabriel Gálik ◽  
Jakub Jakubec ◽  
Tibor Sedlár

Abstract The paper presents the numerical simulation of thermo-hydraulic behaviour of coolant in the VVER- 440 nuclear reactor under standard outage conditions. Heating-up and flow of coolant between the reactor pressure vessel and spent fuel storage pool are discussed.


Author(s):  
Kang-Yul Bae ◽  
Young-Soo Yang ◽  
Myung-Su Yi ◽  
Chang-Woo Park

To manufacture a steel structure, in the first step, raw steel plate needs to be cut into proper sizes. Oxy-fuel flame is widely used in the cutting process due to its flexibility with respect to accessibility, plate thickness, cost, and material handling. However, the deformation caused by the cutting process frequently becomes a severe problem for the next process in the production of steel product. To decrease the deformation, the thermo-elasto-plastic behavior of the steel plate in the cutting process should be analyzed in advance. In this study, heat sources in oxy-ethylene flame cutting of steel plate were modeled first, and the heat flow in the steel plate was then analyzed by the models of the heat sources using a numerical simulation based on the finite element method. To verify the analysis by the numerical simulation including the models, a series of experiments were performed, and the temperature histories at several points on the steel plate during the cutting process were measured. Moreover, the predicted sizes of the heat-affected zone by the numerical simulations according to the variation in the cutting parameters were compared to the experimental results. The power functions of the relationship between the sizes of the heat-affected zone and cutting parameters were obtained by the recursion analysis using the correlation between the results and parameters. The results of the numerical simulation showed good agreement with those of the experiments, indicating that the proposed models of the heat sources and thermal analysis were feasible to analyze the heat flow in the steel plate during the cutting process.


2017 ◽  
Vol 79 (7-3) ◽  
Author(s):  
Iham F. Zidane ◽  
Khalid M. Saqr ◽  
Greg Swadener ◽  
Xianghong Ma ◽  
Mohamed F. Shehadeh

Gulf and South African countries have enormous potential for wind energy. However, the emergence of sand storms in this region postulates performance and reliability challenges on wind turbines. This study investigates the effects of debris flow on wind turbine blade performance. In this paper, two-dimensional incompressible Navier-Stokes equations and the transition SST turbulence model are used to analyze the aerodynamic performance of NACA 63415 airfoil under clean and sandy conditions. The numerical simulation of the airfoil under clean surface condition is performed at Reynolds number 460×103, and the numerical results have a good consistency with the experimental data. The Discrete Phase Model has been used to investigate the role sand particles play in the aerodynamic performance degradation. The pressure and lift coefficients of the airfoil have been computed under different sand particles flow rates. The performance of the airfoil under different angle of attacks has been studied. Results showed that the blade lift coefficient can deteriorate by 28% in conditions relevant to the Gulf and South African countries sand storms. As a result, the numerical simulation method has been verified to be economically available for accurate estimation of the sand particles effect on the wind turbine blades.


Author(s):  
Daogang Lu ◽  
Yu Liu ◽  
Shu Zheng

Free standing spent fuel storage racks are submerged in water contained with spent fuel pool. During a postulated earthquake, the water surrounding the racks is accelerated and the so-called fluid-structure interaction (FSI) is significantly induced between water, racks and the pool walls[1]. The added mass is an important input parameter for the dynamic structural analysis of the spent fuel storage rack under earthquake[2]. The spent fuel storage rack is different even for the same vendors. Some rack are designed as the honeycomb construction, others are designed as the end-tube-connection construction. Therefore, the added mass for those racks have to be measured for the new rack’s design. More importantly, the added mass is influenced by the layout of the rack in the spent fuel pool. In this paper, an experiment is carried out to measure the added mass by free vibration test. The measured fluid force of the rack is analyzed by Fourier analysis to derive its vibration frequency. The added mass is then evaluated by the vibration frequency in the air and water. Moreover, a two dimensional CFD model of the spent fuel rack immersed in the water tank is built. The fluid force is obtained by a transient analysis with the help of dynamics mesh method.


2011 ◽  
Vol 97-98 ◽  
pp. 698-701
Author(s):  
Ming Lu Zhang ◽  
Yi Ren Yang ◽  
Li Lu ◽  
Chen Guang Fan

Large eddy simulation (LES) was made to solve the flow around two simplified CRH2 high speed trains passing by each other at the same speed base on the finite volume method and dynamic layering mesh method and three dimensional incompressible Navier-Stokes equations. Wind tunnel experimental method of resting train with relative flowing air and dynamic mesh method of moving train were compared. The results of numerical simulation show that the flow field structure around train is completely different between wind tunnel experiment and factual running. Two opposite moving couple of point source and point sink constitute the whole flow field structure during the high speed trains passing by each other. All of streamlines originate from point source (nose) and finish with the closer point sink (tail). The flow field structure around train is similar with different vehicle speed.


Sign in / Sign up

Export Citation Format

Share Document