scholarly journals Time evolution of effective central charge and signatures of RG irreversibility after a quantum quench

2018 ◽  
Vol 4 (3) ◽  
Author(s):  
Axel Cortes Cubero

At thermal equilibrium, the concept of effective central charge for massive deformations of two-dimensional conformal field theories (CFT) is well understood, and can be defined by comparing the partition function of the massive model to that of a CFT. This temperature-dependent effective charge interpolates monotonically between the central charge values corresponding to the IR and UV fixed points at low and high temperatures, respectively. We propose a non-equilibrium, time-dependent generalization of the effective central charge for integrable models after a quantum quench, c_{\rm eff}(t), obtained by comparing the return amplitude to that of a CFT quench. We study this proposal for a large mass quench of a free boson, where the effective charge is seen to interpolate between c_{\rm eff}=0 at t=0t=0, and c_{\rm eff}\sim 1 at t\to\inftyt→∞, as is expected. We use our effective charge to define an “Ising to Tricritical Ising" quench protocol, where the charge evolves from c_{\rm eff}=1/2 at t=0t=0, to c_{\rm eff}=7/10 at t\to\inftyt→∞, the corresponding values of the first two unitary minimal CFT models. We then argue that the inverse “Tricritical Ising to Ising" quench is impossible with our methods. These conclusions can be generalized for quenches between any two adjacent unitary minimal CFT models. We finally study a large mass quench into the “staircase model" (sinh-Gordon with a particular complex coupling). At short times after the quench, the effective central charge increases in a discrete “staircase" structure, where the values of the charge at the steps can be computed in terms of the central charges of unitary minimal CFT models. When the initial state is a pure state, one always finds that c_{\rm eff}(t\to\infty)\geq c_{\rm eff}(t=0), though c_{\rm eff}(t), generally oscillates at finite times. We explore how this constraint may be related to RG flow irreversibility.

1992 ◽  
Vol 07 (supp01a) ◽  
pp. 217-238 ◽  
Author(s):  
BORIS L. FEIGIN ◽  
TOMOKI NAKANISHI ◽  
HIROSI OOGURI

We describe several aspects of the annihilating ideals and reduced chiral algebras of conformal field theories, especially, minimal models of Wn algebras. The structure of the annihilating ideal and a vanishing condition is given. Using the annihilating ideal, the structure of quasi-finite models of the Virasoro (2,q) minimal models are studied, and their intimate relation to the Gordon identities are discussed. We also show the examples in which the reduced algebras of Wn and Wℓ algebras at the same central charge are isomorphic to each other.


2020 ◽  
Vol 2020 (759) ◽  
pp. 61-99 ◽  
Author(s):  
Jethro van Ekeren ◽  
Sven Möller ◽  
Nils R. Scheithauer

AbstractWe develop an orbifold theory for finite, cyclic groups acting on holomorphic vertex operator algebras. Then we show that Schellekens’ classification of {V_{1}}-structures of meromorphic conformal field theories of central charge 24 is a theorem on vertex operator algebras. Finally, we use these results to construct some new holomorphic vertex operator algebras of central charge 24 as lattice orbifolds.


2019 ◽  
Vol 6 (6) ◽  
Author(s):  
Sylvain Ribault

We investigate exactly solvable two-dimensional conformal field theories that exist at generic values of the central charge, and that interpolate between A-series or D-series minimal models. When the central charge becomes rational, correlation functions of these CFTs may tend to correlation functions of minimal models, or diverge, or have finite limits which can be logarithmic. These results are based on analytic relations between four-point structure constants and residues of conformal blocks.


1993 ◽  
Vol 08 (20) ◽  
pp. 3495-3507 ◽  
Author(s):  
W. EHOLZER

Using the representation theory of the subgroups SL 2(ℤp) of the modular group we investigate the induced fusion algebras in some simple examples. Only some of these representations lead to "good" fusion algebras. Furthermore, the conformal dimensions and the central charge of the corresponding rational conformal field theories are calculated. Two series of representations which can be realized by unitary theories are presented. We show that most of the fusion algebras induced by admissible representations are realized in well-known rational models.


2019 ◽  
Vol 6 (3) ◽  
Author(s):  
Christian Ecker ◽  
Daniel Grumiller ◽  
Wilke van der Schee ◽  
Shahin Sheikh-Jabbari ◽  
Philipp Stanzer

We consider the Quantum Null Energy Condition (QNEC) for holographic conformal field theories in two spacetime dimensions (CFT_22). We show that QNEC saturates for all states dual to vacuum solutions of AdS_33 Einstein gravity, including systems that are far from thermal equilibrium. If the Ryu-Takayanagi surface encounters bulk matter QNEC does not need to be saturated, whereby we give both analytical and numerical examples. In particular, for CFT_22 with a global quench dual to AdS_33-Vaidya geometries we find a curious half-saturation of QNEC for large entangling regions. We also address order one corrections from quantum backreactions of a scalar field in AdS_33 dual to a primary operator of dimension h in a large central charge expansion and explicitly compute both, the backreacted Ryu–Takayanagi surface part and the bulk entanglement contribution to EE and QNEC. At leading order for small entangling regions the contribution from bulk EE exactly cancels the contribution from the back-reacted Ryu-Takayanagi surface, but at higher orders in the size of the region the contributions are almost equal while QNEC is not saturated. For a half-space entangling region we find that QNEC is gapped by h/4h/4 in the large h expansion.


Author(s):  
Xun Liu ◽  
Tsukasa Tada

Abstract We reexamine two-dimensional Lorentzian conformal field theory using the formalism previously developed in a study of sine-square deformation of Euclidean conformal field theory. We construct three types of Virasoro algebra. One of them reproduces the result by Lüscher and Mack, while another type exhibits divergence in the central charge term. The third leads to a continuous spectrum and contains no closed time-like curve in the system.


1990 ◽  
Vol 05 (11) ◽  
pp. 2087-2115 ◽  
Author(s):  
WAFIC A. SABRA ◽  
STEVEN THOMAS

Starting from the formulation of induced (1, 0) supergravity in 1 + 1 dimensions we consider the effects of perturbing the theory with relevant operators that preserve rotational, translational and supersymmetry whilst breaking scale invariance. In particular we calculate the correlation functions <Ja(x)Jb(y)> of graded SL (2R) currents Ja(x) in the presence of such perturbations from which we define central charge functions K. These functions are shown to be monotonic and are the analogue of Zamolodchikovs C-function as defined in usual conformal field theories.


1989 ◽  
Vol 04 (18) ◽  
pp. 4877-4908 ◽  
Author(s):  
EZER MELZER

We present a general formalism for conformal field theories defined on a non-Archimedean field. Such theories are defined by complex-valued correlation functions of fields of a [Formula: see text]-adic variable. Conformal invariance is imposed by requiring the correlation functions to be unchanged under fractional linear transformations, the latter forming the full analogue of the conformal group in two-dimensional, euclidean space-time. All fields in the theory can be taken to be "primary", under the "non-Archimedean conformal group". The conformal symmetry fixes completely the form of all correlation functions, once we are given the weight-spectrum of the theory and the OPE coefficients (which must be the structure constants of certain commutative, associative algebras). We explicitly construct non-Archimedean CFT's having the same weight spectrum as that of Archimedean models of central charge c < 1. The OPE coefficients of these "local" Archimedean and non-Archimedean models are related by adelic formulae.


Sign in / Sign up

Export Citation Format

Share Document