scholarly journals Entanglement islands in higher dimensions

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahmed Almheiri ◽  
Raghu Mahajan ◽  
Jorge Santos

It has been suggested in recent work that the Page curve of Hawking radiation can be recovered using computations in semi-classical gravity provided one allows for ``islands" in the gravity region of quantum systems coupled to gravity. The explicit computations so far have been restricted to black holes in two-dimensional Jackiw-Teitelboim gravity. In this note, we numerically construct a five-dimensional asymptotically AdS geometry whose boundary realizes a four-dimensional Hartle-Hawking state on an eternal AdS black hole in equilibrium with a bath. We also numerically find two types of extremal surfaces: ones that correspond to having or not having an island. The version of the information paradox involving the eternal black hole exists in this setup, and it is avoided by the presence of islands. Thus, recent computations exhibiting islands in two-dimensional gravity generalize to higher dimensions as well.

1994 ◽  
Vol 09 (27) ◽  
pp. 4811-4835 ◽  
Author(s):  
TAKANORI FUJIWARA ◽  
YUJI IGARASHI ◽  
JISUKE KUBO

In two-dimensional dilaton gravity theories, there may exist a global Weyl invariance which makes the black hole spurious. If the global invariance and the local Weyl invariance of the matter coupling are intact at the quantum level, there is no Hawking radiation. We explicitly verify the absence of anomalies in these symmetries for the model proposed by Callan, Giddings, Harvey and Strominger. The crucial observation is that the conformal anomaly can be cohomologically trivial and so not truly anomalous in such dilaton gravity models.


2001 ◽  
Vol 16 (19) ◽  
pp. 1263-1268 ◽  
Author(s):  
DONAM YOUM

We show that the modified Cardy–Verlinde formula without the Casimir effect term is satisfied by asymptotically flat charged black holes in arbitrary dimensions. Thermodynamic quantities of the charged black holes are shown to satisfy the energy-temperature relation of a two-dimensional CFT, which supports the claim in our previous work (Phys. Rev.D61, 044013, hep-th/9910244) that thermodynamics of charged black holes in higher dimensions can be effectively described by two-dimensional theories. We also check the Cardy formula for the two-dimensional black hole compactified from a dilatonic charged black hole in higher dimensions.


2002 ◽  
Vol 17 (10) ◽  
pp. 609-618 ◽  
Author(s):  
ELIAS C. VAGENAS

Hawking radiation emanating from two-dimensional charged and uncharged dilatonic black holes — dimensionally reduced from (2+1) spinning and spinless, respectively, BTZ black holes — is viewed as a tunneling process. Two-dimensional dilatonic black holes (AdS(2) included) are treated as dynamical background in contrast to the standard methodology where the background geometry is fixed when evaluating Hawking radiation. This modification to the geometry gives rise to a nonthermal part in the radiation spectrum. Nonzero temperature of the extremal two-dimensional charged black hole is found. The Bekenstein–Hawking area formula is easily derived for these dynamical geometries.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Yiming Chen ◽  
Henry W. Lin

Abstract It is widely believed that exact global symmetries do not exist in theories that admit quantum black holes. Here we propose a way to quantify the degree of global symmetry violation in the Hawking radiation of a black hole by using certain relative entropies. While the violations of global symmetry that we consider are non-perturbative effects, they nevertheless give $$ \mathcal{O} $$ O (1) contributions to the relative entropy after the Page time. Furthermore, using “island” formulas, these relative entropies can be computed within semi-classical gravity, which we demonstrate with explicit examples. These formulas give a rather precise operational sense to the statement that a global charge thrown into an old black hole will be lost after a scrambling time.The relative entropies considered here may also be computed using a replica trick. At integer replica index, the global symmetry violating effects manifest themselves as charge flowing through the replica wormhole.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Rong-Gen Cai ◽  
Song He ◽  
Shao-Jiang Wang ◽  
Yu-Xuan Zhang

Abstract We revisit the late-time growth rate of various holographic complexity conjectures for neutral and charged AdS black holes with single or multiple horizons in two dimensional (2D) gravity like Jackiw-Teitelboim (JT) gravity and JT-like gravity. For complexity-action conjecture, we propose an alternative resolution to the vanishing growth rate at late-time for general 2D neutral black hole with multiple horizons as found in the previous studies for JT gravity. For complexity-volume conjectures, we obtain the generic forms of late-time growth rates in the context of extremal volume and Wheeler-DeWitt volume by appropriately accounting for the black hole thermodynamics in 2D gravity.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Yoshinori Matsuo

Abstract Recently it was proposed that the entanglement entropy of the Hawking radiation contains the information of a region including the interior of the event horizon, which is called “island.” In studies of the entanglement entropy of the Hawking radiation, the total system in the black hole geometry is separated into the Hawking radiation and black hole. In this paper, we study the entanglement entropy of the black hole in the asymptotically flat Schwarzschild spacetime. Consistency with the island rule for the Hawking radiation implies that the information of the black hole is located in a different region than the island. We found an instability of the island in the calculation of the entanglement entropy of the region outside a surface near the horizon. This implies that the region contains all the information of the total system and the information of the black hole is localized on the surface. Thus the surface would be interpreted as the stretched horizon. This structure also resembles black holes in the AdS spacetime with an auxiliary flat spacetime, where the information of the black hole is localized at the interface between the AdS spacetime and the flat spacetime.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Georgios K. Karananas ◽  
Alex Kehagias ◽  
John Taskas

Abstract We derive a novel four-dimensional black hole with planar horizon that asymptotes to the linear dilaton background. The usual growth of its entanglement entropy before Page’s time is established. After that, emergent islands modify to a large extent the entropy, which becomes finite and is saturated by its Bekenstein-Hawking value in accordance with the finiteness of the von Neumann entropy of eternal black holes. We demonstrate that viewed from the string frame, our solution is the two-dimensional Witten black hole with two additional free bosons. We generalize our findings by considering a general class of linear dilaton black hole solutions at a generic point along the σ-model renormalization group (RG) equations. For those, we observe that the entanglement entropy is “running” i.e. it is changing along the RG flow with respect to the two-dimensional worldsheet length scale. At any fixed moment before Page’s time the aforementioned entropy increases towards the infrared (IR) domain, whereas the presence of islands leads the running entropy to decrease towards the IR at later times. Finally, we present a four-dimensional charged black hole that asymptotes to the linear dilaton background as well. We compute the associated entanglement entropy for the extremal case and we find that an island is needed in order for it to follow the Page curve.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Xuanhua Wang ◽  
Ran Li ◽  
Jin Wang

Abstract We apply the recently proposed quantum extremal surface construction to calculate the Page curve of the eternal Reissner-Nordström black holes in four dimensions ignoring the backreaction and the greybody factor. Without the island, the entropy of Hawking radiation grows linearly with time, which results in the information paradox for the eternal black holes. By extremizing the generalized entropy that allows the contributions from the island, we find that the island extends to the outside the horizon of the Reissner-Nordström black hole. When taking the effect of the islands into account, it is shown that the entanglement entropy of Hawking radiation at late times for a given region far from the black hole horizon reproduces the Bekenstein-Hawking entropy of the Reissner-Nordström black hole with an additional term representing the effect of the matter fields. The result is consistent with the finiteness of the entanglement entropy for the radiation from an eternal black hole. This facilitates to address the black hole information paradox issue in the current case under the above-mentioned approximations.


2011 ◽  
Vol 26 (13) ◽  
pp. 937-947 ◽  
Author(s):  
ALEXANDRE YALE

We study the semiclassical tunneling of scalar and fermion fields from the horizon of a Constant Curvature Black Hole, which is locally AdS and whose five-dimensional analogue is dual to [Formula: see text] super-Yang–Mills. In particular, we highlight the strong reliance of the tunneling method for Hawking radiation on near-horizon symmetries, a fact often hidden behind the algorithmic procedure with which the tunneling approach tends to be used. We ultimately calculate the emission rate of scalars and fermions, and hence the black hole's Hawking temperature.


Sign in / Sign up

Export Citation Format

Share Document