scholarly journals Assessing Techniques for Quantifying the Impact of Bias Due to an Unmeasured Confounder: An Applied Example

2021 ◽  
Vol Volume 13 ◽  
pp. 627-635
Author(s):  
Julie Barberio ◽  
Thomas P Ahern ◽  
Richard F MacLehose ◽  
Lindsay J Collin ◽  
Deirdre P Cronin-Fenton ◽  
...  
2007 ◽  
Vol 136 (3) ◽  
pp. 334-340 ◽  
Author(s):  
M. D. B. CABRAL ◽  
R. R. LUIZ

SUMMARYThe objective of this study was to assess the impact of a possible unmeasured confounding variable in a previously published association between the effects of household water supply and positive results for hepatitis A serology. This was estimated using a path of integration between two methods of sensitivity analysis, called Rosenbaum's method and Greenland's external adjustment. The association between household water supply and positive results for hepatitis A (outcome) serology was insensitive to confounding unless the odds ratio for the association between the confounder and the outcome was ⩾4. The integration of the two sensitivity analysis methods presented proved useful when assessing the effects of a potential unmeasured confounder.


2010 ◽  
Vol 13 (2) ◽  
pp. 188-198 ◽  
Author(s):  
Ronir Raggio Luiz ◽  
Maria Deolinda Borges Cabral

One of the main purposes of epidemiological studies is to estimate causal effects. Causal inference should be addressed by observational and experimental studies. A strong constraint for the interpretation of observational studies is the possible presence of unobserved confounders (hidden biases). An approach for assessing the possible effects of unobserved confounders may be drawn up through the use of a sensitivity analysis that determines how strong the effects of an unmeasured confounder should be to explain an apparent association, and which should be the characteristics of this confounder to exhibit such an effect. The purpose of this paper is to review and integrate two independent sensitivity analysis methods. The two methods are presented to assess the impact of an unmeasured confounder variable: one developed by Greenland under an epidemiological perspective, and the other developed from a statistical standpoint by Rosenbaum. By combining (or merging) epidemiological and statistical issues, this integration became a more complete and direct sensitivity analysis, encouraging its required diffusion and additional applications. As observational studies are more subject to biases and confounding than experimental settings, the consideration of epidemiological and statistical aspects in sensitivity analysis strengthens the causal inference.


2020 ◽  
Author(s):  
Xiang Zhang ◽  
James Stamey ◽  
Maya B Mathur

Purpose: We review statistical methods for assessing the possible impact of bias due to unmeasured confounding in real world data analysis and provide detailed recommendations for choosing among the methods. Methods: By updating an earlier systematic review, we summarize modern statistical best practices for evaluating and correcting for potential bias due to unmeasuredconfounding in estimating causal treatment effect from non-interventional studies. Results: We suggest a hierarchical structure for assessing unmeasured confounding.First, for initial sensitivity analyses, we strongly recommend applying a recently developed method, the E-value, that is straightforward to apply and does not require prior knowledge or assumptions about the unmeasured confounder(s). When some such knowledge is available, the E-value could be supplemented by the rule-out or array method at this step. If these initial analyses suggest results may not be robust to unmeasured confounding, subsequent analyses could be conducted using more specialized statistical methods, which we categorize based on whether they requireaccess to external data on the suspected unmeasured confounder(s), internal data, or no data. Other factors for choosing the subsequent sensitivity analysis methods arealso introduced and discussed, including the types of unmeasured confounders and whether the subsequent sensitivity analysis is intended to provide a corrected causaltreatment effect. Conclusion: Various analytical methods have been proposed to address unmeasured confounding, but little research has discussed a structured approach to select appropriate methods in practice. In providing practical suggestions for choosing appropriate initial and, potentially, more specialized subsequent sensitivity analyses, we hopeto facilitate the widespread reporting of such sensitivity analyses in non-interventional studies. The suggested approach also has the potential to inform pre-specificationof sensitivity analyses before executing the analysis, and therefore increase the transparency and limit selective study reporting.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.


1997 ◽  
Vol 161 ◽  
pp. 197-201 ◽  
Author(s):  
Duncan Steel

AbstractWhilst lithopanspermia depends upon massive impacts occurring at a speed above some limit, the intact delivery of organic chemicals or other volatiles to a planet requires the impact speed to be below some other limit such that a significant fraction of that material escapes destruction. Thus the two opposite ends of the impact speed distributions are the regions of interest in the bioastronomical context, whereas much modelling work on impacts delivers, or makes use of, only the mean speed. Here the probability distributions of impact speeds upon Mars are calculated for (i) the orbital distribution of known asteroids; and (ii) the expected distribution of near-parabolic cometary orbits. It is found that cometary impacts are far more likely to eject rocks from Mars (over 99 percent of the cometary impacts are at speeds above 20 km/sec, but at most 5 percent of the asteroidal impacts); paradoxically, the objects impacting at speeds low enough to make organic/volatile survival possible (the asteroids) are those which are depleted in such species.


1997 ◽  
Vol 161 ◽  
pp. 189-195
Author(s):  
Cesare Guaita ◽  
Roberto Crippa ◽  
Federico Manzini

AbstractA large amount of CO has been detected above many SL9/Jupiter impacts. This gas was never detected before the collision. So, in our opinion, CO was released from a parent compound during the collision. We identify this compound as POM (polyoxymethylene), a formaldehyde (HCHO) polymer that, when suddenly heated, reformes monomeric HCHO. At temperatures higher than 1200°K HCHO cannot exist in molecular form and the most probable result of its decomposition is the formation of CO. At lower temperatures, HCHO can react with NH3 and/or HCN to form high UV-absorbing polymeric material. In our opinion, this kind of material has also to be taken in to account to explain the complex evolution of some SL9 impacts that we observed in CCD images taken with a blue filter.


1997 ◽  
Vol 161 ◽  
pp. 179-187
Author(s):  
Clifford N. Matthews ◽  
Rose A. Pesce-Rodriguez ◽  
Shirley A. Liebman

AbstractHydrogen cyanide polymers – heterogeneous solids ranging in color from yellow to orange to brown to black – may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orangebrown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia, the color observed depending on the concentration of HCN involved. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to α-amino acids. Black polymers and multimers with conjugated ladder structures derived from HCN could also be formed and might well be the source of the many nitrogen heterocycles, adenine included, observed after pyrolysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter might therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized directly from HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.


Author(s):  
Lucien F. Trueb

Crushed and statically compressed Madagascar graphite that was explosively shocked at 425 kb by means of a planar flyer-plate is characterized by a black zone extending for 2 to 3 nun below the impact plane of the driver. Beyond this point, the material assumes the normal gray color of graphite. The thickness of the black zone is identical with the distance taken by the relaxation wave to overtake the compression wave.The main mechanical characteristic of the black material is its great hardness; steel scalpels and razor blades are readily blunted during attempts to cut it. An average microhardness value of 95-3 DPHN was obtained with a 10 kg load. This figure is a minimum because the indentations were usually cracked; 14.8 DPHN was measured in the gray zone.


Author(s):  
Sarah A. Luse

In the mid-nineteenth century Virchow revolutionized pathology by introduction of the concept of “cellular pathology”. Today, a century later, this term has increasing significance in health and disease. We now are in the beginning of a new era in pathology, one which might well be termed “organelle pathology” or “subcellular pathology”. The impact of lysosomal diseases on clinical medicine exemplifies this role of pathology of organelles in elucidation of disease today.Another aspect of cell organelles of prime importance is their pathologic alteration by drugs, toxins, hormones and malnutrition. The sensitivity of cell organelles to minute alterations in their environment offers an accurate evaluation of the site of action of drugs in the study of both function and toxicity. Examples of mitochondrial lesions include the effect of DDD on the adrenal cortex, riboflavin deficiency on liver cells, elevated blood ammonia on the neuron and some 8-aminoquinolines on myocardium.


Sign in / Sign up

Export Citation Format

Share Document